Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Efficient Simulation of 3D Electro-optical Waveguides Using the Effective Refractive Index Method

M. Herlitschke, M. Blasl, and F. Costache
Fraunhofer Institute for Photonic Microsystems
Dresden, Germany

3D FEM simulation of millimeter-scale, complex electro-optically induced waveguide based devices demands the use of grids with more than several million nodes. Hence the simulation could take substantial time and require large amounts of available memory. This paper presents a computation algorithm based on the conversion of an initial 3D waveguide structure into an analogous 2D structure, ...

Calculating the Haze Parameter of Textured Transparent Conductive Oxides

A. ?ampa[1], M. Topi?[1]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

In thin-film solar cells (a-Si:H, µc-Si:H, CIGS, etc.) scattering of light is very important to increase absorption of light in the active layers of solar cells. Today the most efficient thin-film solar cells are designed or deposited on random textured transparent conductive oxides (TCO). In order to study the scattering properties of the surface texture we have developed a numerical model in ...

Optimized Illumination Directions of Single-Photon Detectors Integrated with Different Plasmonic Structures

M. Csete[1], Á. Sipos[1], A. Szalai[1], G. Szabó[1]
[1]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary

The optimal orientations of different single-photon detector designs were determined by COMSOL software package. Absorption of niobium-nitride (NbN) stripes in two different (p=220 nm, 3p=660 nm) periodic patterns integrated with plasmonic elements was studied. In OC-SNSPDs consisting of ~quarter-photon-wavelength nano-cavity the optimum direction is perpendicular incidence onto NbN stripes in ...

Super-resolving Properties of Metallodielectric Stacks

N. Katte[1], J. Haus[1], J.B. Serushema[1], and M. Scalora[2]
[1]University of Dayton, Dayton, OH, USA
[2]Charles M. Bowden Research Center, Redstone Arsenal, AL, USA

We show that diffraction can be suppressed in a one-dimensional metallodielectric stack (MDS) at visible wavelengths to achieve super-resolution imaging. In our calculations we use two popular techniques, which can be adapted to investigate the imaging properties of MDSs. The two methods are the transfer matrix method (TMM) and the Finite element method based software, COMSOL Multiphysics. The ...

Fibre-Optic Microsensor Based on Surface Plasmon Resonance in a Microfluidic Cell : An Experimental and Numerical Multiphysics Approach

G. Louarn, T. Makiabadi, V. Le Nader, and M. Kanso
Institut des Matériaux Jean-Rouxel (IMN), CNRS- Université de Nantes, France

In the last decade, the surface plasmon resonance (SPR) has become a very sensitive technique for real-time detection in many application areas. Considering the fiber optic concept and the important needs for analyzing biomolecular reactions through automated and miniaturized components, fiber optic sensors based on the SPR technique are becoming an important choice in the field of sensing. In ...

Modal Characterization of the Plasmonic Slot Waveguide Using COMSOL Multiphysics

F. Frezza[1], P. Nocito[2], and E. Stoja[1]
[1]Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
[2]MISE, Communication Department, ISCOM, Rome, Italy

We investigate and compare the characteristics of the fundamental guided mode sustained by a subwavelength plasmonic slot waveguide for three types of metals: gold, silver and aluminium. This is done in terms of mode effective index, propagation length, confinement and, as the mode under study is quasi-TEM, we also develop a transmission line model that can be useful in the design of optical ...

Magnetic Liquids for Lab-on-a-chip and Rapid Diagnostics Applications

H. Köser
Yale University

In this presentation we outline our recent work on Magnetic Liquids, and the great number of application areas these are used. Ferrofluids are nanometer sized magnetic particles, covered by a surfactant, suspended in a carrier medium compatible with the surfactant material. Ferrofluids are applicable to a great and ever increasing number of application areas, such as: • Liquid Seals and ...

Terahertz Resonant Dipole Nanoantennas

S. Tuccio [1], A. Alabastri[1], L. Razzari[1], A. Toma[1], C. Liberale[1], R. Proietti Zaccaria[1], F. De Angelis[1], G. Das[1], E. di Fabrizio[1]
[1]Istituto Italiano di Tecnologia, Genova, Italy

Nanoantennas have been successfully employed in a wide set of applications. We show the possibility to expand usual nanoantenna functionalities in the THz domain with a gold dipole nanoantenna. We considered an array of aligned planar gold nanoantennas over a silicon substrate. The high near field enhancement, localized at the device ends, indicates potential uses for THz spectroscopy and ...

Multiphysic FEMLAB modelisation to evaluate mid-infrared photonic detector performances

Cuminal, Y.1, Christol, P.2, Rodriguez, J.B2, Joullié, A.2
1 Laboratoire des Sciences des Matériaux et d’Automatique (LASMEA), Université Clermont II, UMR CNRS 6602, Aubiére, France
2 Centre d’Electronique et de Micro-optoélectronique de Montpellier (CEM2), Université de Montpellier-II, UMR CNRS 5507, Montpellier, France

Infrared photonic detectors operating in the mid infrared region find applications in pollution monitoring, high-speed infrared imaging systems and free space telecommunications. There is a need for new uncooled high performance detector systems and antimonide-based (Sb-based) semiconductor quantum structures could be an alternative of the well-established technologies. The main objective of ...

Solving the Paraxial Wave Equation using COMSOL

P. Mikulski, K. Mcilhany, and R. Malek-Madani
United States Naval Academy
Annapolis, MD

Here we present and discuss numerical solutions to the paraxial wave equation using COMSOL (2D, PDE, General Form, time-dependent analysis). Ultimately, the goal is to extend this treatment of free-space beam propagation to the case of propagation through a medium that is non-uniform and subject to non-linear effects where the beam itself is modifying the properties of the medium in which it is ...

Quick Search