Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Charge Carrier Motion in Semiconductors

B. Kreisler, G. Anton, J. Durst, and T. Michel
Physikalisches Institut Abt. IV, Erlangen

The motion of free charge carriers in semiconductors was simulated using the convection and diffusion module in COMSOL. The focus of this work is the sensor layer of the Medipix2 x-ray detector, in our case made of silicon. The charge cloud generated by photon interactions within the sensor material moves through the material due to an applied electric field. The charges are collected by the ...

Modeling Signal Propagation in Integrated Graded Index Multimode Waveguides with the Finite Element Method

T. Kühler, and E. Griese
Institute of Theoretical Electrical Engineering and Photonics, Universität Siegen, Siegen, Germany

A novel approach for realizing electrical printed circuit boards with integrated optical interconnects for high bandwidth data transmission is the implementation of waveguides in thin glass foils which can be integrated into the PCB lamination composite. The application of an ion-exchange process results in local changes of the refractive index and finally graded index multimode waveguides are ...

Theoretical Simulations of Silicon-On-Nothing (SON) Structures

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1], F. Hoffmann[2], L. Brencher[2]
[1]Technische Universität Dresden, Dresden, Saxony, Germany
[2]Infineon Technologies GmbH, Dresden, Dresden, Saxony, Germany

A novel technique for semiconductor manufacturing is introduced: Silicon-On-Nothing. This process consists of an initial cylindrical trench which has a shape evolution under certain conditions: high temperature (1100 °C), low pressure (10 Torr) and a non-oxidizing atmosphere such as hydrogen. These conditions enable a, mainly, surface diffusion phenomenon whose final result is an empty space ...

Zero Dispersion Modeling in As2S3-Based Microstructured Fibers

P. Gagnon[1], H. Manouzi[1], M. El Amraoui[1], Y. Messaddeq[1]
[1]Laval University, Quebec City, QC, Canada

An important step in designing a microstructured optical fiber is the computation and management of its dispersion curve. It is well-known that computing chromatic dispersion can be done analytically for certain geometries (e.g. step-index fibers), but no such analytical methods is known in the realm of microstructured optical fibers. Figure 1, Figure 2, and Figure 3 illustrate cross-sections of ...

Magnetic Liquids for Lab-on-a-chip and Rapid Diagnostics Applications

H. Köser
Yale University

In this presentation we outline our recent work on Magnetic Liquids, and the great number of application areas these are used. Ferrofluids are nanometer sized magnetic particles, covered by a surfactant, suspended in a carrier medium compatible with the surfactant material. Ferrofluids are applicable to a great and ever increasing number of application areas, such as: • Liquid Seals and ...

A Study of Distributed Feed-Back Fiber Laser Sensor for Aeronautical Applications Using COMSOL Multiphysics

I. Lancranjan[1], C. Gavrila[2], S. Miclos[3], and D. Savastru[3]
[1]Advanced Study Centre - National Institute for Aerospace Research Elie Carafoli, Bucharest, Romania
[2]Technical University of Civil Engineering Bucharest, Romania
[3]National Institute R&D of Optoelectronics, INOE 2000, Bucharest, Romania

Distributed Feedback Fiber Laser (DFB-FL) sensors are increasingly used in aeronautical applications. One of the newest such applications consists in detecting the “transition” zone between laminar and turbulent air flow upon the extrados surface of an aircraft wing. In this specific application DFB-FL are operated as air pressure sensors monitoring amplitude variations of ~1 Pa (laminar ...

Simulation Based Approach to Fluorescence Diffuse Optical Tomography

R. Singh, and I. Jose
BITS Pilani Goa Campus
Goa, India

Diffuse Optical Tomography (DOT) uses Near Infra-red (NIR) light to monitor physiological changes in internal organs. NIR light being less energetic in nature can be used for continuous monitoring of tumor infected biological tissue, neonatal brain and many such applications where high energy radiation can cause severe damage. The forward problem of DOT, which involves obtaining of the ...

COMSOL Multiphysics in Modeling MOCVDs

Y. Shimogaki
Shimogaki Laboratory
Department of Materials Engineering,
The University of Tokyo
Japan

This paper showed that: * SAG-MOCVD is a powerful tool to fabricate OEICs and is also effective to extract true surface kinetics during MOCVD. * GaAs-MOCVD process was examined by SAG analysis where it was seen that below 600ºC, surface kinetics shows non-linear behavior. * Surface reaction rate constant of adsorbed species was constant against offset angle, while adsorption equilibrium ...

Effective Permittivity and Optical Properties of Photonic/Plasmonic Structures in Nanocomposite Glass

O. Kiriyenko, W. Hergert, S. Wackerow, and H. Graener
Institut für Physik, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany

In this presentation, we study the optical properties of different photonic structures.

Fibre-Optic Microsensor Based on Surface Plasmon Resonance in a Microfluidic Cell : An Experimental and Numerical Multiphysics Approach

G. Louarn, T. Makiabadi, V. Le Nader, and M. Kanso
Institut des Matériaux Jean-Rouxel (IMN), CNRS- Université de Nantes, France

In the last decade, the surface plasmon resonance (SPR) has become a very sensitive technique for real-time detection in many application areas. Considering the fiber optic concept and the important needs for analyzing biomolecular reactions through automated and miniaturized components, fiber optic sensors based on the SPR technique are becoming an important choice in the field of sensing. In ...

Quick Search