Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Towards Modelling Semiconductor Heterojunctions

R. Millett[1], J. Wheeldon[2], T. Hall[1], and H. Schriemer [1,2]
[1] Centre for Research in Photonics, School of Information Technology and Engineering, University of Ottawa, Canada
[2] Centre for Research in Photonics, Dept. of Physics, University of Ottawa, Canada

A 2D multiphysics model has been developed to simulate heterojunctions separating abruptly doped semiconductor layers of different dopant concentrations. Numerical results are presented for the case of nN, pN and PpN heterojunctions, and a general procedure for simulating multiple heterojunctions is described.

COMSOL Multiphysics in Plasmonics and Metamaterials

S. Sun [1,2], and G. Guo [2,3]
[1]Physics Division, National Center for Theoretical Sciences (North), National Taiwan University, Taipei 10617, Taiwan
[2]Department of Physics, National Taiwan University, Taipei 10617, Taiwan
[3]Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan

This paper will present research about: * Effective-medium properties of metamaterials: A quasi-mode theory * 2D complete band gaps from 1D photonic crystal * Optical microcavities

Characterization of a 3D Photonic Crystal Structure Using Port and S-Parameter Analysis

M. Dong[1], M. Tomes[1], M. Eichenfield[2], M. Jarrahi[1], T. Carmon[1]
[1]University of Michigan, Ann Arbor, MI, USA
[2]Sandia National Laboratories, Albuquerque, NM, USA

We present a 3D port sweep method in a lossy silicon photonic crystal resonator to demonstrate the capabilities of COMSOL Multiphysics® for frequency domain analysis with input and output ports. This method benefits from the advantages of the S-parameter analysis to characterize the input and output coupling into the resonator. By pumping one end of the cavity with a CW plane wave, we are able ...

Forces and Heating in Plasmonic Particles

M. Gonçalves[1], O. Marti[1]
[1]Ulm University - Inst. of Experimental Physics, Ulm, Germany

Plasmonic resonances arising in gold nanoparticles lead to strongly localized near-field enhancements. These enhancements generate strong field gradients that can be exploited in particle trapping. On the other hand plasmonic resonances lead to enhanced absorption and heat generation. Gold nanoparticles have been used to kill cancer cells based on plasmonic heating. We have investigated the ...

Electromagnetics at Optical and Microwave Frequencies using COMSOL Multiphysics

Howie Stuart
Bell Laboratories, Lucent Technologies
Whippany, USA

The flexibility of COMSOL Multiphysics enables a variety of computational approaches to be applied towards solving electromagnetic problems across the whole spectrum. I will describe techniques for studying resonant electromagnetic interactions in a range of structures, including materials with negative electric permittivity (metals at optical frequencies), and small microwave resonators and ...

A Study of Optical Sensor Based on Fiber Bragg Grating Using COMSOL Multiphysics®

C. Gavrila[1] and I. Lancranjan[2]


[1]Technical University of Civil Engineering Bucharest, Bucharest, Romania
[2]Advanced Study Centre, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, Romania

Fiber optic sensors can measure a large range of physical, chemical and environmental variables such as temperature, pressure, shape, position, chemical concentration, moisture, etc. Fiber optic sensors provide measurements in applications where the conventional electrical based sensors cannot be used, due to measurement requirements such as extreme temperature, small size, high sensor count, or ...

Incoherent Propagation of Light in Coherent Models

A. Čampa[1], J. Krč[1], M. Topič[1]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

In the finite element based modeling and simulations only the coherent propagation of light is considered. However, in reality when light passes the thick layer it loses the phase information and its coherent nature due to the spatial, temporal or spectral incoherence. In this work, we present two methods to include the incoherent layer in coherent based simulations: (a) phase matching and (b) ...

Implementation of the Perfectly Matched Layer to Determine the Quality Factor of Axisymmetric Resonators in COMSOL

M.I. Cheema, and A.G. Kirk
McGill University, Montreal, QC, Canada

Due to the inseparability of the wave equation, numerical methods are needed to develop an accurate electromagnetic model for various axisymmetric resonators such as micro-discs and micro-toroids. Our purpose is the implementation of a perfectly matched layer to determine the quality factor of axisymmetric resonators with high accuracy in COMSOL. We treated the perfectly matched layer as an ...

Modeling and Simulation of Silicon Optical MEMS Switches Controlled by Electrostatic Field

J. Golebiowski[1], S. Milcarz[1]
[1]Technical University of Lodz, Poland

The use of optical sensors in the industry is still growing. A transmission of signal from the sensors is mostly done by optical fibers. Switching the signals from optical paths may be done by using micromechanical silicon switches. The main advantage is an ability to transmit data from many sensors using different wavelengths, simultaneously minimizing optical power losses. A silicon beam with ...

Double Gate MOSFET modeling

Gidon, S.
CEA Grenoble Leti

We use the MOS transistor model from COMSOL as a template to do our own model of double gate MOSFET. At the present time, it seems that double gate devices- going to non-planar transistor architectures- could be a solution for sub-32nm nodes. In addition, new design flexibility is allowed when gates are not interconnected. However, appropriate models must be developed. In our investigation, we ...

Quick Search