Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Numerical Simulation of Magnetic Drug Targeting with Flow – Structural Interaction in an Arterial Branching Region of Interest

A. Morega, A. Dobre, and M. Morega
University Politehnica of Bucharest, Bucharest, Romania

We report a numerical study on the blood – magnetic carrier aggregate flow in an external magnetic field, for applications such as magnetic drug targeting. The arterial system morphology is complex and patient-related therefore more realistic numerical simulations request medical image-based reconstruction to generate computational domains. Simpleware package is used to generate the ...

Numerical Simulations of Ultrasonic Non Destructive Techniques of Masonry Buildings

S. Carcangiu[1], B. Cannas[1], M. Usai[1], and G. Concu[2]
[1]Department of Electric and Electronic Engineering, Cagliari, Italy
[2]Department of Structural and Infrastructural Engineering and Geomatics, Cagliari, Italy

An experimental program has been developed, with the purpose of evaluating the reliability in building diagnosis and characterization of an integrated analysis of several parameters, associated with acoustic waves propagating through the material. The Direct Transmission Technique has been applied. In this paper we developed a numerical model using the Transient Acoustics-Piezoelectric ...

Modelling Failure Mechanims in Sands Under Extreme Loads Using COMSOL

J. Mwebesa, D. Kalumba, and R. Kulabako
Makerere University
Kampala, Uganda

Studies by Nishaat (2009) showed that Terzaghi\'s bearing capacity model didn\'t adequately predict the bearing capacity failure in Philippi Dune sands. Nishaat carried out her investigation using a physical model that was built in a geotechnical laboratory. The failure surfaces she observed in the sands did not resemble those predicted by Terzaghi and Meyerhof\'s models. However the use of a ...

Numerical Experiments for Thermally-induced Bending of Nematic Elastomers with Hybrid Alignment

L. Teresi[1], and A. DeSimone[2]
[1]LaMS - Modeling & Simulation Lab, University Roma Tre, Roma, Italy
[2]SISSA - International School for Advanced Studies, Trieste, Italy

We deal with Liquid Crystal Elastomers (LCEs) having hybrid alignment (HNEs), that is, fabricated with a given non-homogeneous nematic orientation. For such a materials, permanent distortions induced by deswelling can be compensated by those resulting from cooling below the transition temperature, thus yielding the possibility of producing temperature-driven actuators. Here, we simulate the ...

Accurate Parameters Extraction of Multiconductor Transmission Lines in Multilayer Dielectric Media

S. Musa[1], M. Sadiku[1], and O. Momoh[2]
[1]Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX
[2]Indiana University-Purdue University

Development of very high speed integrated circuits is currently of great interest for today\'s technologies. This paper presents the quasi-TEM approach for the accurate parameters extraction of multiconductor transmission lines interconnect in single, two, and three-layered dielectric regions using the finite element method (FEM). We illustrate that FEM is accurate and effective for modeling ...

Finite Element Analysis of Integrated Circuit Interconnect Lines on Lossy Silicon Substrate

S. Musa[1], M. Sadiku[1], and A. Emam[2]

[1]Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX
[2]Information Systems Department, King Saud University, Riyadh, Saudi Arabia

The silicon substrate has a significant effect on the inductance parameter of a lossy interconnect line on an integrated circuit. It is essential to take this into account in determining the transmission line electrical parameters. In this paper, a new quasi-TEM capacitance and inductance analysis of multiconductor multilayer interconnects is successfully demonstrated using the finite element ...

Optimization of a High-Temperature High-Pressure Direct Wafer Bonding Process for III-V Semiconductors

R. Martin, J. Kozak, K. Anglin, and W. Goodhue
University of Massachusetts Lowell
Lowell, MA

Many optoelectronic devices utilize a heterojunction of a pair semiconducting materials including high-efficiency MEMS devices, solar cells, LEDs, and VCSELs. One fabrication technique which achieves such a device is direct wafer fusion. To optimize the process, COMSOL Multiphysics 4.0 was used to test various geometric configurations of the fixture. 2D and 3D models were created in order ...

Computational Acoustic Attenuation Performance of Helicoidal Resonators

W. Lapka
Poznan University of Technology
Poznan, Poland

This paper concerns the problem of obtaining proper acoustic attenuation performance through computations. COMSOL was used to solve acoustics systems with helicoidal resonators in the frequency domain. Based on the studies of insertion and transmission loss of helicoidal resonators, a high consistency between the results obtained by numerical calculations with experimental measurements was ...

Single Crystal Diamond NEMS Switch

M. Liao
Optical and Electronic Materials Unit
National Institute for Materials Science
Japan

A single-crystal diamond NEMS switch was fabricated while batch production of SCD MEMS/NEMS structures were developed. The diamond NEMS switches exhibit high performance with respect to high controllability, high reproducibility, and good reliability. Modeling and simulations were made that were consistent with experiments.

Numerical Aspects of the Implementation of Artificial Boundary Conditions for Laminar Fluid-Structure Interactions

C. Boeckle[1], P. Wittwer[1]
[1]University of Geneva, Geneva, Switzerland

We discuss the implementation of artificial boundary conditions for stationary Navier-Stokes flows past bodies in the half-plane, for a range of low Reynolds numbers. When truncating the half-plane to a finite domain for numerical purposes, artificial boundaries appear. We present an explicit Dirichlet condition for the velocity at these boundaries in terms of an asymptotic expansion for the ...

Quick Search

2711 - 2720 of 3230 First | < Previous | Next > | Last