Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Simulation of Optical Properties of the Si/SiO2/Al Interface  at the Rear of Industrially Fabricated Si Solar Cells

Y. Yang[1], and P. Altermatt[1,2]
[1]Institute for Solar Energy Research Hamelin (ISFH), Emmerthal, Germany
[2]Dep. Solar Energy Research, Inst. Solid-State Physics, Leibniz University of Hanover, Germany

The specular and diffuse reflection properties of sunlight at the rear surface of silicon solar cells with various degrees of roughness are computed by solving the Maxwell and material equations in two dimensions, using the COMSOL RF Module. The model is tested on planar Si/SiO2/air interfaces and planar Si/SiO2/Al interfaces. The simulations show that for wavelengths of 800 nm, (i) maximum ...

Sensitivity Analysis of Different Models of Piezoresistive Micro Pressure Sensors

S. Meenatchisundaram[1], S. M. Kulkarni[2], S. Bhat
[1]Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal, Karnataka, India.
[2]Department of Mechanical Engineering, National Institute of Technology, Surathkal, Karnataka, India.

Piezoresistive pressure sensors have received much attention over the years because of low cost, simple measurement techniques, etc. There is a challenge in design with respect to appropriate positioning, shape and temperature compensation. Different models of piezoresistive pressure sensors are proposed to enhance its sensitivity in terms of output voltage. This paper aims in sensitivity ...

Analysis of Burning Candle

J.S. Crompton, L.T. Gritter, S.Y. Yushanov, and K.C. Koppenhoefer
AltaSim Technologies LLC, Columbus, OH, USA

Analysis of burning candles is extremely complex; combustion produces a highly non-linear temperature profile through the flame in which local temperatures may exceed 1400 °C. Heat transfer includes radiation, conduction and convection components and the low melting point of the candle wax leads to a phase change that allows mass transport via capillary flow prior to combustion in the flame. ...

Air Damping of Oscillating MEMS Structures: Modeling and Comparison with Experiment

S. Gorelick[1], M. Leivo[1], U. Kantojärvi[1]
[1]VTT Technical Research Centre of Finland, Espoo, Finland

Excessive air damping can be detrimental to the performance of oscillating MEMS components. Complex systems, such as structures in pre-etched cavities or angular comb-drive scanning mirrors, typically require simulations to reliably evaluate the air damping. The simulated and experimental performance of the following systems was evaluated and compared: two types of out-of-plane cantilevers, ...

Design of a MEMS Capacitive Comb-drive Accelerometer

T. Kaya[1], B. Shiari[2], K. Petsch[1], and D. Yates[2]
[1]Central Michigan University, School of Engineering and Technology, Mount Pleasant, MI
[2]University of Michigan, Dept. of Electrical Engineering and Computer Science, Ann Arbor, MI

In this work, a MEMS low-g accelerometer with three sensitive directions is designed for health monitoring applications. The accelerometer may have different sensitivity in different axes. The proof-mass of the device is suspended by four serpentine springs, and the comb drive structure is used to form the differential capacitor to measure the displacement of the proof-mass. The structure has an ...

Numerical Study of Navier-Stokes Equations in Supersonic Flow over a Double Wedge Airfoil using Adaptive Grids

V. Gopal[1], R. Kolluru[1]
[1]BMS College of Engineering, Bangalore, Karnataka, India.

Numerical study of aerodynamic characteristics in steady laminar supersonic flow over a double wedge airfoil is carried out using commercially available finite element based CFD tool COMSOL Multiphysics. The aerodynamic characteristics of double wedge airfoil like lift and drag are analyzed by solving Navier-Stokes equations in the flow field for various thickness to chord ratios (t_c) and angle ...

Numerical Study of Local Density of States in Photonic Crystal Waveguides

A. Javadi[1], P. Lodahl[1]
[1]Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

In this contribution we study how a planar photonic crystal waveguide (PhCW), created by introducing a line defect in the photonic crystal, can modify the projected local density of states (LDOS) for a dipole emitter. We use the COMSOL Multiphysics® RF Module to carry out eigenvalue calculations studies on PhCW. When the dipole is in resonance with the waveguide mode, the enhancement Fp of ...

Structural Durability Analysis of Powertrain Mounting Bracket

Sameer Kolte[1], David Neihguk[1], Abhinav Prasad[1]
[1]Mahindra and Mahindra Ltd., Vehicle Integration COE, Mahindra Research Valley, Mahindra World City, Chengalpattu, Tamil Nadu, India

Structural analysis is performed to check the durability of Engine mounts for a given load and support conditions. The engine mount bracket is subjected to loads primarily due to weight of the powertrain and the unbalanced torque. In this analysis, the component is optimized such that stresses generated do not exceed the endurance strength of the material. In this paper, structural mechanics ...

Heat and Mass Transfer in Convective Drying Processes

C. Gavrila[1], A. Ghiaus[1], and I. Gruia[2]
[1]Technical University of Civil Engineering Bucharest, Faculty of Building Services, Bucharest, Romania
[2]University of Bucharest, Faculty of Physics, Bucharest, Romania

A dynamic mathematical model, based on physical and transport properties and mass and energy balances, was developed for the simulation of unsteady convective drying of agricultural products (fruits and vegetables) in static bed conditions. The model utilizes water sorption isotherm equations and the change in solid density due to the shrinkage phenomenon. The aim of this article is to describe ...

Studying Target Erosion in Planar Sputtering Magnetrons Using a Discrete Model for Energetic Electrons

C. Feist[1], A. Plankensteiner[2], J. Winkler[2]
[1]CENUMERICS, Innsbruck, Austria
[2]PLANSEE SE, Reutte, Austria

A discrete model for the prediction of relative ion bombardment flux and target erosion in planar sputtering magnetrons is implemented in COMSOL Multiphysics®. Planar magnetrons are used within physical vapor deposition (PVD) processes to form thin film depositions on various types of substrates. The presented model portrays trajectories of energetic electrons within low pressure direct current ...

Quick Search