Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Integrating COMSOL into a Mathematical Modeling Course for Chemical Engineers

A. Dixon, and D. DiBiasio
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

The multiphysics simulation package COMSOL was incorporated into a course in mathematical modeling for chemical engineers. Our implementation for the first year of using COMSOL in the course is described, and assessment results based on examinations and student survey results are presented and analyzed. The students appear to be learning how to operate the COMSOL program quite satisfactorily, but ...

Design of Pressure Measuring Cells Using the Unified Material Law

P. Aguirre[1], F. Figueroa[1]
[1]Sensor Technik Wiedemann GmbH, Kaufbeuren, Bayern, Germany

Pressure Sensors are widely used in the automotive industry. Their main use is the dynamic monitoring of pressure inside combustion engines. To achieve a good signal accuracy, the design of pressure sensors can be improved with FEM calculations of stress and strains on the measuring cell depending on their geometry and material properties. The geometry is adapted according to a special ...

On the Convergence Order of COMSOL Solutions

A. Bradji1, and E. Holzbecher2
1Charles University, Prague, Czech Republic
2Weierstrass Institute for Applied Analysis and Stochastics WIAS, Berlin, Germany

The convergence of numerical solutions is mainly determined by the convergence order, which quantifies the improvement of the solution when the mesh is refined. In this paper we examine various differential equations and the convergence behavior of their COMSOL Finite Element solutions. The numerically observed convergence rates are compared with theoretical results, as far as these are ...

SD Numerical Simulation Technique for Hydrodynamic Flow Gas-Solids Mixing

I. Mantilla[1], S. De Vicente[2]
[1]National University of Engineering, Lima, Perú
[2]Polytechnic University of Madrid, Madrid, Spain

We formulate a new mathematical model of gas-solids mixing hydrodynamic flow [1] in a combustion chamber with a fluid bed system used in the combustion of mineral coal waste. This model in study is called Model Gas-Solids Mixing and it is constructed by averaging the conservation equations (mass and momentum) for a two-phase flow, which takes into account the existence of a small parameter rho in ...

Simulating Organogenesis in COMSOL Multiphysics®: Parameter Optimization for PDE-based Models

D. Iber[1], D. Menshykau[2], P. Germann[2], L. Lermuzeaux[2,3]
[1]D-BSSE, ETH Zurich, Switzerland, SIB, Basel, Switzerland
[2]D-BSSE, ETH Zurich, Basel, Switzerland
[3]Department of Bioengineering, University of Nice-Sophia Antipolis, Nice, France

Morphogenesis is a tightly regulated process that has been studied for decades. Previously we developed data-based mechanistic models for a range of developmental processes with a view to integrate the available knowledge and to better understand the underlying regulatory logic. In our previous papers on simulating organogenesis in COMSOL Multiphysics® we discussed methods to efficiently solve ...

Simulation Organogenesis in COMSOL: Deforming and Interacting Domains

D. Iber[1], D. Menshykau[1]
[1]D-BSSE, ETH Zurich, Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. We are developing mechanistic models for the morphogenesis of limbs, lungs, and kidneys with a view to integrate available knowledge and to better understand the underlying regulatory logic. Organ size changes dramatically during development, and tissues are composed of several layers that may expand ...

Early Stage Melt Ejection in Laser Percussion Drilling

T. Eppes[1]
[1]University of Hartford, Hartford, CT, USA

Laser percussion drilling is widely used in the aerospace industry to produce cooling holes in jet engine components. This process is a thermal, contact-free process which involves firing a sequence of focused optical pulses onto a target material [1-4]. During each optical pulse, the central portion of the target area heats to a liquid then vapor state where the expanding gas produces a recoil ...

The Influence of Core Shape and Material Nonlinearities to Corner Losses of Inductive Element

M. Puskarczyk[1], B. Jamieson[1], W. Jurczak[1]
[1]ABB Corporate Research Center, Kraków, Poland

The effects of sharp corners on the flux distribution in a ferromagnetic core are modeled using COMSOL Multiphysics® to determine the time-domain flux density for an applied field which is uniform in the non-corner section of the core. The frequency spectrum of the flux distribution is calculated for testing points through the corner and the effects of harmonic frequencies on the flux and loss ...

Utilization of COMSOL Multiphysics' JAVA API for the Implementation of a Micromagnetic Modeling and Simulation Package with a Customized User Interface

L. Teich[1], A. Hütten[2], C. Schröder[1]
[1]Department of Engineering Sciences and Mathematics, Computational Materials Science & Engineering (CMSE), University of Applied Sciences Bielefeld, Bielefeld, Germany
[2]Department of Physics, Thin Films and Nanostructures, Bielefeld University, Bielefeld, Germany

One of the big advantages of COMSOL Multiphysics is the possibility to implement user-defined partial differential equations (PDE) which can be coupled to COMSOL\'s predefined physics interfaces. However, using the tool’s standard user interface requires manual implementation of the PDEs and a multitude of problem-specific parameters. This process is not just error-prone but also very time ...

Looking for the Origin of Power Laws in Electric Field Assisted Tunneling

H. Cabrera[1], D.A. Zanin[1], L.G. De Pietro[1], A. Vindigni[1], U. Ramsperger[1], D. Pescia[1]
[1]Laboratory for Solid State Physics, ETH Zurich, Zurich, Switzerland

A sharp tip approached perpendicular to a conducting surface at subnanometer distances and biased with a small voltage builds a junction across which electrons can be transferred from the tip apex to the nearest surface atom by direct quantum mechanical tunneling. Such a junction is used e.g. in Scanning Tunneling Microscopy (STM). When the distance d between tip and collector is increased ...

Quick Search