Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird

Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.


Sehen Sie sich die Kollektion für die COMSOL Conference 2023 an

Structural Mechanics and Thermal Stressesx

Simulation of the Behaviour of a Knitted Structure Made of NiTi Wires to the Mechanical Loading

J. Kafka
Technical University of Liberec
Department of Engineering Mechanics
Liberec, Czech Republic

This article describes the response of the knitted fabric to the mechanical loading and how a simplified FE model can approach realistically the response of the structure to the mechanical loading. The knitted fabric is made of nitinol material, which belongs to the group of shape memory ... Mehr lesen

The Microplane Model for Concrete in COMSOL

A. Frigerio
RSE S.p.A.
Milan, Italy

The safety of large civil structures is often evaluated by means of numerical models based on the Finite Element Method. In this frame, the choice of a constitutive law able to represent the complex mechanical behaviour of concrete is a key point. This paper deals with a detail ... Mehr lesen

FEM Simulations on the Effect of the Thermal-induced Surface Stress on Ultrathin Resonators

V. Pini, J. J. Ruz Martinez, E. Gil, M. Calleja, and J. Tamayo
Instituto de Microelectrónica de Madri
IMM-CNM (CSIC)
Madrid, Spain

The detection back-action phenomenon has received little attention in physical, chemical, and biological sensors based on nanomechanical systems. We show that this effect is very significant in ultrathin bimetallic cantilevers, in which the laser beam that probes the picometer scale ... Mehr lesen

Introduction to COMSOL based Modeling of Levitated Flywheel Rotor

A. Pilat
AGH University of Science and Technology
Kraków, Poland

This elaboration presents a pre-study on automatic rotor construction for the flywheel energy storage system dedicated to operate in the levitation mode. The optimization profile model is used as a basic profile source. The 3D flywheel shape is generated on the base of obtained ... Mehr lesen

Modeling of Anisotropic Suede-like Material During the Thermoforming Process

G.Lelli[1], M. Pinsagli[1] , and E. di Maio[2]
[1]Alcantara S.p.A. (Application Development Center), Nera Montoro, Italy
[2]University of Naples "Federico II" (Department of Materials and Production Engineering), Naples, Italy

Physical and mechanical studies of Alcantara® have shown very pronounced anisotropic nonlinear features. Using constitutive equations borrowed from the modelling of biological tissues like tendons and/or arteries under the form of hyperelastic free-energy functions, a good representation ... Mehr lesen

Lamb Waves and Dispersion Curves in Plates and It’s Applications in NDE Experiences Using Comsol Multiphysics

P. Gómez, J. P. Fernandez, and P. D. García
Hydro-Geophysics & NDE Modeling Unit
University of Oviedo
Mieres, Spain

In this paper, a model for numerically obtaining lamb wave modes and dispersion curves in plates is presented. It is shown that COMSOL Multiphysics can be employed to simulate the behavior of guided waves in dispersive plates, which is useful for NDE applications. A two dimensional ... Mehr lesen

Optimization of a High-Temperature High-Pressure Direct Wafer Bonding Process for III-V Semiconductors

R. Martin, J. Kozak, K. Anglin, and W. Goodhue
University of Massachusetts Lowell
Lowell, MA

Many optoelectronic devices utilize a heterojunction of a pair semiconducting materials including high-efficiency MEMS devices, solar cells, LEDs, and VCSELs. One fabrication technique which achieves such a device is direct wafer fusion. To optimize the process, COMSOL Multiphysics 4 ... Mehr lesen

Fluid-Structure Interaction Analysis of a Peristaltic Pump

N. Elabbasi, J. Bergstrom, and S. Brown
Veryst Engineering, LLC.
Needham, MA

Peristaltic pumping is an inherently nonlinear multiphysics problem where the deformation of the tube and the pumped fluid are strongly coupled. We used COMSOL Multiphysics to investigate the performance of a 180 degree rotary peristaltic pump with two metallic rollers, and an ... Mehr lesen

Thermal Stress in a Zero Thermal Expansion Composite

C. Romao, and M. White
Dept. of Chemistry and Institute for Research in Materials
Dalhousie University
Halifax, NS
Canada

A series of 2-D finite element models of a ZrO2-ZrW2O8 composite system were created in COMSOL Multiphysics to study the effect of pores between the matrix (ZrO2) and filler (ZrW2O8) materials. Pores were modeled as ellipses concentric with the filler particles. Seventeen model ... Mehr lesen

Study of Hard-and Soft- Magnetorheological Elastomers (MRE’s) Actuation Capabilities

J. Roche[1], P. Von Lockette[1], and S. Lofland[2]
[1]Mechanical Engineering Dept., Rowan University, Glassboro, NJ
[2]Physics and Astronomy Dept., Rowan University, Glassboro, NJ

In this study, magneto-rheological elastomer (MRE) composite beams made of Barium hexaferrite (BaM) and Iron (Fe) powders combined with a highly-compliant matrix material were simulated using COMSOL\'s Solid Mechanics and AC/DC modules. The goal of the work was to develop models capable ... Mehr lesen