Simulating the Electrothermal Transients in Superconducting Magnets

Bridget Cunningham March 9, 2017

When a superconducting magnet suddenly transitions to a normal state — known as a quench — its coils may overheat. Quench detection and protection systems are often included in the magnets to enable safer operation. For these systems to be effective, it’s important to understand the resulting electrothermal transient phenomena that take place within the magnet. Using numerical simulation, we can develop sophisticated systems that prevent possible disruption effects.

Read More

Nancy Bannach March 8, 2017

Thermoelectric coolers come in various types and sizes, including single-stage and multistage devices. Their application area is large, as they are used in both consumer products like cooling boxes and as temperature controllers in satellites. If you are looking to analyze the design of a thermoelectric cooler and optimize it for a specific application area, a simulation app is an efficient way to accomplish your goals. We discuss how to use the Thermoelectric Cooler demo app in this blog post.

Read More

Walter Frei February 14, 2017

Overhead power cables can be seen almost everywhere in the United States, but there are also many underground power cables that we can’t see. They have the advantage of protection from wind and snow damage and, due to their shielding, have greatly reduced electromagnetic field emission. One disadvantage of underground cables is that they heat up significantly, which leads to degradation of the insulation and failure. Let’s see how to model electromagnetic heating in the COMSOL Multiphysics® software.

Read More

Categories

Bridget Cunningham February 8, 2017

Electrical installations must often adhere to requirements for the maximum electric field levels in their surrounding area. Electric fields that are too high can be harmful to both operators and the general public. Simulation is typically used to verify that these levels meet the requirements, otherwise significant redesigns may be needed much later on. The Application Builder enables design engineers to perform verification studies earlier in the process.

Read More

Caty Fairclough January 20, 2017

Magnetic prospecting is a useful technique for finding iron ore deposits and reducing exploration costs. While simulation provides a way to better understand and improve this process, generating results for each new scenario can be time consuming. Instead, engineers can increase efficiency by designing a magnetic prospecting app for personalized analyses. Here, we discuss an app that quickly generates customized results by enabling users to import heightmaps and geographical data and then add magnetic simulations.

Read More

Nirmal Paudel November 28, 2016

Electrodynamic magnetic levitation can occur when there are time-varying magnetic fields in the vicinity of a conductive material. In this blog post, we will demonstrate how to model this principle with two examples: a TEAM benchmark problem of an electrodynamic levitation device and an electrodynamic wheel.

Read More

Categories

Guest Rune Thygesen November 22, 2016

Today, we invite guest blogger Rune Thygesen of Reelight to discuss designing a power generation source for bicycle safety lights using simulation. At Reelight, we are developing an affordable bicycle safety light that is extremely easy for the end user to install. Along with a stronger and more flexible mounting system, we needed to develop a new power generation platform. Using simulation-based design, we created a power platform that is easy to use and quick to install.

Read More

Guest Bauke Kooger November 8, 2016

Today, we invite guest blogger Bauke Kooger of Delft University of Technology to discuss modeling a magnetic suspension system for the Hyperloop. The Hyperloop is a proposed mode of transportation in which a vehicle, or pod, travels at the speed of sound through a low-pressure tube. At this speed, a magnetic suspension offers several advantages over systems such as air bearings or wheels. To test this, Delft’s Hyperloop team modeled their pod’s magnetic suspension in the COMSOL Multiphysics® software.

Read More

Jonathan Velasco October 26, 2016

Aside from the winding type, concentrated or distributed, the logic behind the design of electrical machines is relatively similar, as it’s based on their phasor diagrams. Using an induction motor benchmark model with a concentrated winding, we’ll show you how to create selections in the COMSOL Multiphysics® software to streamline the analysis of your winding design. We’ll then demonstrate how to further advance your simulation studies by automating these processes with the Application Builder.

Read More

Caty Fairclough July 25, 2016

Quadrupole mass filters, the key component of quadrupole mass spectrometers, filter ions by their charge-to-mass ratio, only allowing ions with a certain ratio to pass through the device. As such, a high transmission probability for a specific ion through the filter is desirable. However, fringe fields in the mass filter can affect this probability. By using multiphysics simulation, we can take a closer look at quadrupole mass filters and investigate the effect of fringe fields on these devices.

Read More

Caty Fairclough July 19, 2016

While bumblebees are not a complete mystery, we still have a lot more to learn about these helpful insects. A topic with a lot of buzz surrounding it is how they find food. Using electroreception, an ability most often found in aquatic animals, is one possibility. But how do bumblebees use electroreception? To find answers, a research team at the University of Bristol combined the power of physical experiments and simulation.

Read More

Categories


Categories


Tags

1 2 3 8