Optimizing the Geometry of Optical Antennas with Genetic Algorithms

Caty Fairclough September 12, 2017

When thinking about natural selection, antennas are probably not the first thing that comes to mind. But with genetic algorithms, we can use the basic principles of natural selection to solve antenna optimization problems. For example, genetic algorithms enabled one research group to optimize the geometry of an optical antenna. They implemented their study by using LiveLink™ for MATLAB®, an add-on product to the COMSOL Multiphysics® software.

Weiterlesen

Bridget Cunningham November 17, 2016

Food packaging is often composed of recycled materials, like newspapers or plastic, which may contain residual mineral oil inks. Traces of these potentially hazardous substances leftover from the recycled materials can migrate from the packaging to the stored food. To account for this, one research team developed a numerical model to analyze the migration patterns of mineral oil hydrocarbons for various packaging situations. Compared to experimental studies, their approach offers a more efficient and cost-effective way of optimizing food safety.

Weiterlesen

Bridget Cunningham May 2, 2016

Graphene is a material with a strong presence — and impact — throughout the scientific community. Amongst its many uses, researchers are looking to graphene as a potential material solution within sensor designs for medical and biosensing applications. Today, we’ll explore the role of simulation in analyzing and optimizing a 3D multilayered graphene biosensor.

Weiterlesen

Jennifer Segui September 3, 2014

Billions of dollars are spent each year in the U.S. to repair corrosion damage. To help reduce the high cost of corrosion, engineers at the Naval Research Laboratory (NRL) in Washington, D.C. are using multiphysics simulation to gain a better understanding of the fundamental mechanism. A successful research outcome at NRL will establish the correlation between metal microstructure, corrosion, and mechanical strength. Material designers could then develop stronger, corrosion-resistant materials using this new information.

Weiterlesen

Lars Gregersen July 2, 2014

This is Part 3 of a blog series on how to handle selections and entity numbers when using LiveLink™ for MATLAB® and the COMSOL® Application Programming Interface (API). In this section, I’ll discuss how the internal handling of selections and entity numbers in COMSOL Multiphysics® simulation software is performed and how you can utilize these methods when setting up your own models.

Weiterlesen

Lars Gregersen June 4, 2014

In Part 1 of this blog series, I introduced how you can export a model M-file from COMSOL Multiphysics® simulation software to learn about the structure of the COMSOL Application Programming Interface (API). One important part of a model M-file is the selections that are made in order to set up properties for the domain, boundaries, etc. These selections are identified using numbers. Here, we explain how you can automate the handling of the entity numbers using LiveLink™ for MATLAB®.

Weiterlesen

Lars Gregersen May 14, 2014

When developing models in COMSOL Multiphysics® software, it is common to come across tasks that have to be carried out repeatedly. This three-part blog series will show you how repetitive tasks can be efficiently achieved using model M-files and LiveLink™ for MATLAB®.

Weiterlesen

Fanny Griesmer April 18, 2014

Did you know that you can use MATLAB® functions in your COMSOL Multiphysics® models? Well, you can, and in this video tutorial we will show you how, using LiveLink™ for MATLAB®.

Weiterlesen

Amelia Halliday March 10, 2014

There are several techniques out there for saving memory when solving a model. One involves splitting it into separate sections and solving these individually, instead of the entire model at once. If you want to map data from one COMSOL Multiphysics® solution to the next using MATLAB® scripting, you can do so by connecting the two software programs via LiveLink™ for MATLAB®.

Weiterlesen

Supratik Datta June 13, 2013

Did you know that you can combine the strengths of COMSOL Multiphysics® and MATLAB® in real time to solve engineering simulations? To me, that sounds like getting the best of both worlds. Let me explain.

Weiterlesen


Kategorien


Tags