Optimizing Combustion Particle Control in an Electric Filter Design

Thomas Forrister June 5, 2018

The greenhouse effect has made it necessary for scientists to develop combustion processes that minimize the accumulation of carbon dioxide in the atmosphere. Possible fuels in these processes include biomass and other biofuels, which recycle carbon within a short timescale. But there’s a downside: Combustion of these materials produces carbon and ash particles that must be removed from the exhaust. To improve particle filtration, researchers studied electrostatic filter designs using models that were validated by comparing them to experimental data.

Weiterlesen

Aditi Karandikar May 30, 2018

The Van Allen radiation belts consist of highly energetic charged particles that have become trapped in Earth’s magnetic field. These particles follow the shape of the field and give the belts a doughnut-like appearance. To study the behavior of the particles in the Van Allen belts, scientists can use the Particle Tracing Module, an add-on product to the COMSOL Multiphysics® software.

Weiterlesen

Friedrich Maier March 30, 2018

Sweeps are very useful for characterizing a system and learning more about how different input values impact the results. You can perform several different types of sweeps in the COMSOL Multiphysics® software, including function, material, and parametric sweeps. However, precise and innovative simulation results also call for mathematical optimization. In this blog post, learn how to combine sweep studies with the built-in optimization functionality.

Weiterlesen

Thomas Forrister March 22, 2018

In the 1970s and 80s, music fans would dedicate entire rooms of their homes to stereo systems. Big, boxy loudspeakers were essential fixtures of these stereo setups. Today, a new trend has emerged: Consumers want loudspeakers that are both powerful and portable, with the ability to connect to devices around the house and on the go. To design sophisticated yet lightweight loudspeakers, you can optimize the topology of their components, such as a magnetic circuit for the loudspeaker driver.

Weiterlesen

Caty Fairclough March 7, 2018

Additive manufacturing has a wide array of applications, such as creating custom medical devices, aerospace components, and artwork. With the list of potential uses continuing to grow, it’s important that this type of manufacturing can keep up with the demand. However, analyzing and optimizing this complex process can be difficult. What can engineers do to overcome this challenge?

Weiterlesen

Guest René Christensen February 28, 2018

Today, guest blogger René Christensen of GN Hearing discusses including thermoviscous losses in the topology optimization of microacoustic devices. Topology optimization helps engineers design applications in an optimized manner with respect to certain a priori objectives. Mainly used in structural mechanics, topology optimization is also used for thermal, electromagnetics, and acoustics applications. One physics that was missing from this list until last year is microacoustics. This blog post describes a new method for including thermoviscous losses for microacoustics topology optimization.

Weiterlesen

Caty Fairclough December 8, 2017

Within mass spectrometers, plasmas are often used to ionize a sample and an inert background gas. Before the ions produced in the plasma are sent into the mass filter, which determines the sample’s chemical composition, they must be focused into a beam with a suitably small radius. One way to focus ions is with an ion funnel. Focusing ions is a critical stage of the overall design, so it’s important to have a fundamental understanding of the funnel’s operating principles.

Weiterlesen

Caty Fairclough November 15, 2017

Einzel lenses are used to focus charged particle beams in cathode ray tubes (CRTs). To properly analyze an einzel lens, we need to study the charged particles in the lens subject to appropriate electrical excitation. Here, we discuss one such example that uses the Particle Tracing Module, an add-on product to the COMSOL Multiphysics® software.

Weiterlesen

Friedrich Maier October 19, 2017

Optimization is an efficient way to gain deeper knowledge of a model. Much like the different flowers in a colorful bouquet, you can perform a variety of different optimization projects using the Optimization Module. However, parameter estimation is also a widely used technique. Such an analysis is usually set as a least-squares problem based on measured data, but for a clear and unique answer, you might need multiple measurements. Today, learn how to estimate parameters using a multiparameter data set.

Weiterlesen

Caty Fairclough September 12, 2017

When thinking about natural selection, antennas are probably not the first thing that comes to mind. But with genetic algorithms, we can use the basic principles of natural selection to solve antenna optimization problems. For example, genetic algorithms enabled one research group to optimize the geometry of an optical antenna. They implemented their study by using LiveLink™ for MATLAB®, an add-on product to the COMSOL Multiphysics® software.

Weiterlesen

Bridget Cunningham August 28, 2017

Pipelines are used to transport petroleum products and natural gas across long distances in cold environments. Because of this, petroleum mixtures may need to be preheated after being transported in pipelines before a refining process can begin. However, as the oil is pumped through the pipeline, heat is generated from the fluid itself as it flows. To keep costs down and the heat inside the pipe, the pipeline insulation can be optimized using models and simulation.

Weiterlesen


Kategorien


Tags

1 2 3 5