May 3, 2017 Minneapolis, Minnesota9:00 AM - 3:45 PM

Back to Events Calendar

You are invited to join us at COMSOL Day Minneapolis for a day of multiphysics modeling training, talks by invited speakers, and the opportunity to exchange ideas with other simulation specialists in the COMSOL community.

View the schedule for minicourse topics and presentation details. Register for free today.



This introductory demonstration will show you the fundamental workflow of the COMSOL Multiphysics® modeling environment. We will cover all of the key modeling steps, including geometry creation, setting up physics, meshing, solving, and postprocessing.

Coffee Break
Invited Speakers
Daryn Bertelson, Johnson Screens – Aqseptence Group, Inc.

Using COMSOL® to Create Passive Intake Velocity Profile CFD Reports

Johnson Screens® was founded in 1904 by Edward E. Johnson of St. Paul, MN, after he invented the world's first "continuous slot wire wrapped well screen”, a big technological advancement of the day. Over the years, Johnson Screens® expanded its water-well screening technology into industries such as surface water treatment, food and beverage processing, pulp and paper, oil and gas, mineral and aggregate processing, and petrochemicals.

Natural sources of water are vital to our way of life. We use water that comes either by way of public water supply systems or directly from wells or springs. We must treat water from lakes, rivers, or oceans before it is usable, even if it is not intended for human consumption. For example, water for cooling or generating steam in power plants and industrial processes has to be free of debris so as not to clog pumps, valves, pipes, or machinery.

Johnson Screens® uses passive intakes to block debris without harming fish and other wildlife. We use COMSOL Multiphysics® to ensure that we maintain an even through-slot velocity distribution across the screen and guarantee that the maximum slot velocity is no more than 0.50 ft/s as required by EPA 316B. The EPA requires this to minimize the possibility of entrainment of small fish and fish eggs.

Ismail Guler, Boston Scientific

Computational Modeling of Drug Transport in Arterial Tissue

Arterial tissue consists of cells embedded in an extracellular matrix. Drug molecules delivered to the tissue reside in both intracellular and extracellular compartments. However, it is the intracellular concentration of the drug that is critical for its pharmacological effect. The dose-response relationships obtained from cell culture studies cannot be directly related to the tissue drug concentrations in vivo. The drug may bind to both extracellular and intracellular macromolecules in the tissue. In order to connect the data obtained from cell culture studies with that obtained from animal studies, it is necessary to determine what fraction of the drug is in free form and what fraction of it is in bound form in the tissue. A mathematical model combined with in vitro experiments can provide a framework to approach this task.

Paul Belk, Abbott

Another Way to the Liver: Tissue Ablation from the Vasculature

RF ablation is an extremely useful medical technique in which diseased tissue is destroyed using an electrically active catheter to induce Joule heating in the targeted tissue. The Heat Transfer Module, an add-on product to the COMSOL Multiphysics® software, includes an example in which an RF trocar is introduced directly into solid liver tissue and used to destroy a tumor. However, in many cases, it is more convenient to access the disease site by threading the catheter through nearby arteries or veins. We use COMSOL Multiphysics® to explore how the liver ablation changes when the trocar is in the hepatic vein. We study how blood flow in the hepatic vein changes the temperature distribution in the tissue as well as how to account for those effects.

Coffee Break

Learn how to convert a model into a custom app using the Application Builder, which is included in the COMSOL Multiphysics® software. You can upload your apps to a COMSOL Server™ installation to access and run the apps from anywhere within your organization.

Break for Lunch
CFD and Heat Transfer Minicourse

Get a quick overview of using the CFD Module and Heat Transfer Module within the COMSOL® software environment.

Low-Frequency Electromagnetics Minicourse

Explore the capabilities of COMSOL Multiphysics® for electromagnetics in the static and low-frequency regime with a focus on the AC/DC Module.

Coffee Break
Meshing Minicourse

Learn about the meshing techniques that are available to you in the COMSOL Multiphysics® software. We will introduce you to basic meshing concepts, such as how to tweak the meshing parameters for unstructured meshes. More advanced topics include working with swept meshes and creating mesh plots.

High-Frequency Electromagnetics Minicourse

Learn about modeling high-frequency electromagnetic waves using the RF Module, Wave Optics Module, and Ray Optics Module.

Coffee Break
Acoustics and Structural Mechanics Minicourse

Get a brief overview of using the Acoustics Module and Structural Mechanics Module within the COMSOL® software environment.

Solvers Minicourse

Learn the fundamental numerical techniques and underlying algorithms related to linear and nonlinear multiphysics simulations. We will cover the difference between iterative and direct solvers as well as the different study types including stationary, transient, and eigenfrequency analysis.

COMSOL Day Details


DoubleTree by Hilton Minneapolis North
2200 Freeway Blvd
Minneapolis, Minnesota 55445

COMSOL Speakers

Aditya Kalavagunta
Aditya Kalavagunta is a senior engineer responsible for accounts in Minnesota, North Carolina, and South Carolina. He has been with COMSOL since 2009 and an avid COMSOL user since 2003. Aditya received his PhD in electrical engineering and semiconductor physics from Vanderbilt University in 2008.
Jinlan Huang
Jinlan Huang is an applications engineer for vibrations and acoustics and instructs acoustics and heat transfer training courses. She received her PhD from Boston University, Department of Aerospace and Mechanical Engineering, investigating acoustic wave propagation in complex-tissue environments and ultrasound-induced tissue heating and bleeding control. She joined COMSOL in 2011.
Peter Lyu
Peter Lyu is an applications engineer specializing in fluid flow, heat transfer, and optimization. Peter received his MS and PhD degrees in aerospace engineering from the University of Michigan. His research focus was on aircraft design and multidisciplinary design optimization.

Invited Speakers

Daryn Bertelson
Johnson Screens – Aqseptence Group, Inc. Daryn Bertelson is a CAE engineer at Johnson Screens, a Aqseptence Group, Inc. company. In addition to performing various new product development tasks, he provides FEA and CFD analyses for the sales and engineering departments. He received his BS in mechanical engineering from South Dakota State University.
Ismail Guler
Boston Scientific Ismail Guler is a research fellow and member of the Virtual Engineering Team at Boston Scientific Corporation. He provides simulation services to internal clients to help with the development and manufacturing of minimally invasive medical devices. Previously, he was a member of the Team for Advanced Flow Simulation and Modeling at the Army High Performance Computing Research Center in Minneapolis. Ismail holds BS and MS degrees in mechanical engineering from Bosphorus University and an MS degree in aerospace engineering from the University of Minnesota. There, he now teaches a course on the computational modeling of medical devices with the COMSOL Multiphysics® software, which he has been using since 2004.
Paul Belk
Abbott Corporation Paul Belk has a PhD in medical physics and is a principal engineer at Abbott Corporation, where he works on the development of diagnostic and therapeutic medical devices. He has been using simulation of all types for more than 20 years as an integral part of the research and development process. For the past four years, he has been using the COMSOL Multphysics® software (whenever he gets a chance) to study the physics of heat transfer and fluid dynamics in tissue.

Register for COMSOL Day Minneapolis

This event has ended. Visit the event calendar to view upcoming events.