Jun 18, 2019 Southfield, Michigan10:00 AM - 3:00 PM

View All COMSOL Day Locations

Join us at COMSOL Day Southfield for product demonstrations, talks by invited speakers, chats with our technical and sales staff, and the opportunity to exchange ideas with other simulation specialists. This event will showcase use cases from various industries.

View the schedule and register for free today.


Welcoming Remarks
New Features in COMSOL® Presentation/Demo

Come to this session to hear about the new features in COMSOL Multiphysics® version 5.4 and to learn how they can be incorporated into your existing multiphysics models.

Coffee Break
Invited Speaker
Peng Zhao, Oakland University

Multiphysics Modeling of Internal Short Circuits and Thermal Runaway of Li-Ion Batteries

Internal short circuits and the subsequent heat release induced by electrochemical reactions has been a primary cause to trigger Li-ion battery thermal runaway. Given the different dominant physical-chemical processes associated with internal short circuits and thermal runaway, a decouple-recombine approach is adopted to reveal this complex phenomenon from detailed modeling and computations.

On one hand, the thermal response and chemical kinetic feature of thermal runaway is computationally investigated in a three-dimensional configuration with detailed runaway chemistry and assigned heat source intensity, to mimic an accidental heat source. The threshold runaway state has been identified, corresponding to a pairing of critical heat source intensity and critical duration time, below which thermal runaway cannot occur. A sensitivity analysis has been conducted to evaluate the dominant thermal chemical and physical parameters triggering thermal runaway. Material dependence of thermal runaway has also been characterized by comparing different Li-ion battery cathodes, such as lithium cobalt oxide (LiCoO2) and lithium nickel manganese cobalt (NMC).

On the other hand, the evolution of current, voltage, and power dissipation rate fields during a representative internal short circuit scenario is computationally investigated by solving species, charge, and energy conservation equations accounting for electrochemistry. The internal short circuit current could be an order of magnitude higher than the 1C current, and the maximum average power dissipation rate is found to be in the order of 1012 W/m3. Interestingly, the time scale of the heat release rate evolution from electrochemistry is found to be very close to the critical duration time predicted using the thermal runaway chemistry, indicating the consistency of the models developed to describe these two phenomena. The detailed power dissipation density predicted from electrochemistry is then used as input for the heat resource in the thermal runaway calculation to demonstrate the coupling of the electrochemical and thermal abuse model. This work provides useful guidance to the fundamental understanding and prediction of thermal runaway phenomena induced by an internal short circuit in a Li-ion battery.

Zack Graves, SmartUQ

Uncertainty Quantification and Predictive Analytics Featuring SmartUQ Coupled with COMSOL Multiphysics®

Advancements in and the rapid proliferation of modeling and simulation have led to new technologies, such as digital twins, and have given engineers a “data-rich” environment for conducting predictive analytics. Yet, simulations are a deterministic analysis, failing to consider real-world variability and uncertainties surrounding the simulation process. By accounting for uncertainties in their simulation models, engineers can develop an accurate predictive model, enabling the performance of advanced analytics, including uncertainty quantification (UQ), design space exploration, trade studies, and predictive maintenance. These predictive capabilities can significantly reduce product development, warranty, and sustainment costs and improve product reliability and durability.

This talk will provide a brief introduction to UQ and predictive analytics and show how the SmartUQ software can enhance product development and design exploration activities in the COMSOL Multiphysics® software through the use of predictive analytics and UQ techniques. Using a NACA airfoil CFD simulation for demonstration, this talk will walk through SmartUQ’s analytics workflow coupled to COMSOL Multiphysics®.

Break for Lunch

We will perform a product demo of the Optimization Module with a focus on advanced features such as shape and topology optimization.

Coffee Break

Attend this session to learn about the capabilities of the COMSOL Multiphysics® software in structural mechanics and related areas. Among other things, we will discuss the newly released Composite Materials Module and the material activation/deactivation feature in the Structural Mechanics Module, which can be used to simulate additive manufacturing and similar processes.

COMSOL Day Details


The Westin Southfield Detroit
1500 Town Center
Southfield, Michigan 48075

COMSOL Speakers

Mao Mao
Mao Mao is a technical sales engineer who joined COMSOL in 2015. Mao received his PhD in mechanical engineering from Northwestern University. His research focuses on the mathematical modeling of electroosmotic flow in a nanopore system. Mao also holds a bachelor's degree in thermal science from USTC, China.
Phil Kinnane
Phil Kinnane is the VP of sales at COMSOL, Inc. He has previously worked within the Business Development, Operations, and Marketing departments. Phil has 20 years of experience with modeling and simulation for all fields of engineering. He earned his PhD in electrochemical engineering from the Royal Institute of Technology, Stockholm.
Bjorn Sjodin
Bjorn Sjodin is the VP of product management at COMSOL. He has been with COMSOL since 1995 and started out as a member of the development team in Stockholm, Sweden. He joined the COMSOL office in Burlington in 2002.
Temesgen Kindo
Temesgen Kindo works at COMSOL as an applications engineer, specializing in structural mechanics and equation-based modeling. Before joining the Burlington, MA office, Temesgen received his PhD in civil engineering from Duke University. He is interested in nonlinear mechanics, multiphysics problems, and applied mathematics.

Invited Speakers

Zack Graves
Zack Graves, a SmartUQ senior application engineer, is responsible for performing simulation and statistical work for clients in medical device, aerospace, and other industries. He is also a key contributor in SmartUQ’s Digital Twin/Digital Thread initiative. Mr. Graves received a BS in mechanical engineering and astronautics from the University of Wisconsin-Madison.
Peng Zhao
Oakland University
Dr. Peng Zhao has been an assistant professor of mechanical engineering at Oakland University since 2015. He obtained his BS from the Department of Thermal Science and Energy Engineering at the University of Science and Technology of China (USTC) in 2009 and his PhD from the Department of Mechanical and Aerospace Engineering at Princeton University in 2015. His research interests primarily focus on fundamental-based and application-oriented problems in the frontier areas of combustion, fuels, propulsion, safety, and sustainable energy. Current research activities include open-source multiphysics modeling, Li-ion battery safety and thermal runaway, supercritical CO2 oxy-combustion, fuel screening and design, etc., sponsored by the Department of Energy (DOE) and Ford Motor Company. He has published 24 journal articles and 1 book chapter. He was awarded the Bernard Lewis Fellowship by the Combustion Institute; Faculty Recognition Award, the Rosen Graduate Supervision Fellowship, and Faculty Fellowship by Oakland University; Gordon Y.S. Wu Fellowship by Princeton University; and Guo Moruo Presidential Scholarship by USTC. He is a member of the Early Career and Diversity Development Committee of the U.S. Section of the Combustion Institute.

Register for COMSOL Day Southfield

Log in or sign up to register. A COMSOL Access account is required to attend COMSOL Day Southfield.
Forgot your Password?
You have successfully logged in. This page will refresh to complete your event registration.
You have successfully created a new COMSOL Access account. This page will refresh to complete your event registration.