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ABSTRACT

This paper presents a finite element-infinite element coupling approach for modeling a
spherically symmetric transient flow problem in a porous medium of infinite extent. A
finite element model is used to examine the flow potential distribution in a truncated
bounded region close to the spherical cavity. In order to give an appropriate artificial
boundary condition at the truncated boundary, a transient infinite element, that is
developed to describe transient flow in the exterior unbounded domain, is coupled with
the finite element model. The coupling procedure of the finite and infinite elements at
their interface is described by means of the boundary integro-differential equation
rather than through a matrix approach. Consequently, a Neumann boundary condition
can be applied at the truncated boundary to ensure the C'-continuity of the solution at
the truncated boundary. Numerical analyses indicate that the proposed finite element-
infinite element coupling approach can generate a correct artificial truncated boundary

condition to the finite element model for the unbounded flow transport problem.
Crown Copyright © 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Flow and transport problems in porous media are
important topics in the fields of geo-environmental
engineering and geosciences. Due to the multi-physical
interactions involved in such transport process, most
problems of practical interest have to be examined by
numerical approaches at this moment (Bear and Bachmat,
1992). Currently, many finite element computational
packages, such as COMSOL Multi-physics, are developed
and being used for interdisciplinary problems involved in
geosciences, due to their flexibility and strength on
discretizing complicated physical geometries and material
regions. These finite element computational codes can
provide the accurate solutions for various bounded
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domain problems. However, subsurface fluid flow can be
considered as the unbounded domain problem, in the
sense that the flow potential at significant distances (or
theoretically at infinity) should be taken into considera-
tion during the modeling, since the physical nature of the
problem in the remote region usually has influences on
the behaviour of the solution in the near-field. For the
finite element method (FEM) to give accurate solutions to
such problems that involve unbounded domains, appro-
priate artificial boundary conditions should be applied at
truncated boundaries (Zhao and Valliappan, 1993; Kaljevic
et al,, 1992; Khalili et al., 1999; Xia and Zhang, 2006).

A common engineering approach when using FEM for
unbounded flow problems is to truncate the far-field
boundary at a location remote from the near-field region
of interest. But the discretization of the large domain
usually requires a great amount of computational re-
sources. On the other hand, for most engineering applica-
tions, a relatively small region close to the structure is of
interest and the state in the remote region is usually
assumed to be as simple as can be described by the
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analytical solution. In these cases, if a boundary integral
equation can be developed for the problem in the exterior
domain, the boundary element method (BEM) can be
coupled with the FEM to give the appropriate boundary
condition at the truncated boundary (Zienkiewicz et al.,
1977; Brebbia and Dominguez, 1992). However, finding
the fundamental solution for the boundary integral
equation is often difficult, especially for nonlinear pro-
blems and for anisotropic media. Furthermore, the
programming effort of coupling boundary elements to
finite elements at the truncated boundary limits the
applicability of BEM to existing finite element software.

Another approach for extending the FEM to unbounded
domain problems is to use an infinite element (Wood,
1976; Bettess and Zienkiewicz, 1977; Zienkiewicz et al.,
1983; Selvadurai and Karpurapu, 1989; Bettess, 1992;
Khalili et al., 1997), which utilizes a shape function to
describe the basic far-field characteristic of the problem in
the exterior region. Such an infinite element shape
function can be obtained by using a mapping to transform
the global infinite region into a local finite domain, in
which the standard polynomial interpolation is employed
(Bettess, 1977; Damjanic and Owen, 1984; Zienkiewicz
et al, 1985; Simoni and Schrefler, 1987). The inverse
mapping shows that the dependent variable (for steady
state three-dimensional potential problems in particular)
in the exterior domain should be expressed in a
polynomial of 1/r, where r represents the distance from
a specific point (pole) in the interior domain. This is
supported by the fact that the potential problem, as well
as many others, has solutions of this type in the remote
domain. For these problems, therefore, the infinite
element with 1/r"-type decaying shape function can
generate solutions with any degree of accuracy by
choosing a high enough order of polynomial (Lynn and
Hadid, 1981). Recently, the infinite element decay shape
function has been constructed using the analytical solu-
tion of the problem; such transient infinite elements can
be used to give rigorous solutions to time-dependent
unbounded domain potential problems (Zhao and
Valliappan, 1993, 1994; Khalili et al., 1999). However, the
conventional finite element-infinite element coupling
procedure at the truncated boundary is presented at a
matrix level, and this requires programming and re-
coding efforts that may not be applicable to the existing
commercial finite element software. From this point of
view, the Dirichlet-to-Neumann (D-t-N) operator (Johnson
and Nedelec, 1980) and absorbing boundary condition
(Engquist and Majda, 1977), which are widely used for
acoustic and wave propagation problems in the un-
bounded domain, have merit in that the appropriate
truncated boundary condition can be expressed in terms
of the local differential operator (Ihlenburg, 1998).

In this paper, a finite element-infinite element model is
presented for a transient subsurface flow problem in a
spherically symmetric porous region of infinite extent.
The transient nature of such subsurface flow problems is
due to the compressibility of the system, and it should
therefore be investigated using the piezo-conduction
equation. A finite element model is created using the
scientific finite element computational software package

COMSOL Multiphysics (previously referred to as FEMLAB)
to simulate the distribution of the flow potential in a
truncated finite domain, and an infinite element is
developed to take into consideration the regularity
condition of the flow potential in the far field. The
coupling procedure of the infinite element to finite
elements at the truncated boundary is described by
means of an integro-differential equation rather than
through a matrix approach. Based on these integro-
differential equations, either a Dirichlet or a Neumann
boundary condition can be imposed at the truncated
boundary to couple the infinite element to the finite element
model, using the boundary PDE weak form provided in the
COMSOL Multiphysics code. The proposed finite element-
infinite element models are verified with the analytical
solution, and are then used to investigate the transient
development of the flow potential distribution at the
truncated boundary corresponding to the time-dependent
variation of the central cavity boundary condition.

2. The initial boundary value problem
2.1. Governing equations and conditions

The compressibility of either the skeleton of a porous
medium and/or compressibility of the pore fluid will
result in the development of transient effects in Darcy
flow through a porous medium. A complete treatment of
transient flow should, however, take into consideration
the poroelastic nature of the fluid-saturated medium
(Selvadurai, 1996; Lewis and Schrefler, 1998). In a
simplified treatment of fluid flow problem that involves
both the compressibility of the porous skeleton and the
pore fluid, the partial differential equation (PDE) govern-
ing the flow potential can be reduced to the classical
piezo-conduction equation (Selvadurai, 2002)

2, _0¢
DVid =3¢ (1)
where ¢ represents the flow potential, V2 is the Laplace
operator and D is the diffusion coefficient of the flow
potential, which is defined by
k

b= Yw(*Cr + C) (2)

In (2), yw is the unit weight of the pore fluid, G is the
compressibility of the pore fluid, C; is the compressibility
of the soil skeleton, k and n* are the hydraulic conductivity
and porosity of the porous medium, respectively. If the
pore fluid and the soil skeleton are considered to be
incompressible, the diffusion coefficient D becomes
infinity and Eq. (1) reduces to Laplace’s equation.

If the flow is restricted to the spherical symmetry, then
the flow potential only varies along the spherical radial
coordinate R, the piezo-conduction Eq. (1) reduces to the
following one-dimensional diffusion equation

D 0 (,,0¢\ 0¢
2R <R ﬁ) =3t 3

Such spherically symmetric flow problems can be
encountered during deep geological disposal of chemical
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wastes in pressurized boreholes with enlarged cavities
(Selvadurai, 2006) (see Fig. 1). In this case, the flow
potential is also governed by the condition applied at the
cavity boundary

¢(a,t) = ¢oH(t) (4)
as well as the regularity condition applied at infinity:
¢(o0,t) = 0 (5)

Here a represents the radius of the central spherical cavity,
and H(t) is the Heaviside step function. It is usually
assumed that the flow potential is equal to the datum
head before the application of the cavity boundary
condition, implying the following initial condition for
the flow potential

¢(R,0)=0; R € [a,o0) (6)

2.2. Weak forms

The numerical solution of the above subsurface fluid
flow problem in a bounded region close to the central
cavity can be obtained using a finite element model,
which is usually based on the weak form of the governing
equation. The weak form of the piezo-conduction Eq. (1)
can be derived from its weighted residual integral
equation

/ <a¢ D(V2¢>))dQ 0 )

where w represents the arbitrary test function. For the
spherically symmetric flow over a semi-infinite region Q
(a<R<w; 0<0<2m; 0<@<m), the infinitesimal volu-
metric element dQ = R?sin ¢ dRd0 d¢ (where 0 and ¢ are
the azimuth angle and the zenith angle, respectively), and
consequently, the weighted residual integral Eq. (7) can be
reduced to

4n [/ W—R2 dR — / WDaR <R2 2;?) dR} -0 (8)
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Fig. 1. A schematic drawing of finite computational domain Q and an
infinite element e; for flow transport problem for deep geological
disposal of chemical wastes.

The integral Eq. (8) should be satisfied by any test
function w, and therefore it can be assumed that the test
function w has a homogeneous boundary condition at
R=a and satisfies the regularity condition (5) when
R— o, i.e.

w(a) = 0; w(oo) — 0 (9)

Then, applying Green’s formula to integrate (8) by parts
and considering the regularity conditions (5) and (9) of
the flow potential and test function, we obtain a weak
form of the one-dimensional diffusion Eq. (3) as follows:

/w RdR + /deaquzdR 0 (10)

The advantage of the weak form is that it requires the
lower-order derivative of the dependent variable for the
solution of the original governing equation.

3. The infinite element for the exterior domain

From the viewpoint of finite element modeling, the
computations are carried out in a bounded domain that is
discretized into polynomial elements for numerical
calculations of the integrals involved in the weak form
(10). However, it should be noted that the weak form (10)
is derived not only from the governing piezo-conduction
equation but also the regularity condition of the flow
potential at infinity. This means that if the FEM is used to
model the flow problem described by the weak form (10)
in a truncated domain, say a<R<b, an appropriate
artificial boundary condition should be applied on the
truncated boundary R=b in order to consider the
regularity condition of the flow potential at infinity.
Due to this consideration, special procedures should be
coupled into the finite element model to take into account
the influence of the flow potential in the exterior
unbounded region on the one at the interior computa-
tional domain of interest. Among the approaches devel-
oped in the literature, the infinite element can be
considered as a complementary element to the finite
element modeling. A schematic of the finite truncated
domain and an infinite element for the flow transport
problem along the spherical coordinate R described in the
previous section is shown in Fig. 1. The flow potential in
the finite domain €2 is of interest and is determined by the
finite element model, while an infinite element is used to
describe the flow potential distribution in the exterior
unbounded region. At the truncated boundary, an appro-
priate artificial condition should be applied to couple the
finite and infinite elements.

The key issue when constructing an infinite element of
the transient flow transport problem in an unbounded
region is to choose an appropriate so-called hydraulic
potential distribution function that can be used as the
shape function to describe the flow potential distribution
in the infinite element. A general form of the shape
function for the transient infinite element can be derived
from the analytical solution of a representative problem
(Zhao and Valliappan, 1993; Khalili et al., 1999). The
analytical solution of the diffusion Eq. (4) can be ob-
tained in an exact closed form by applying the Laplace



W. Dong, A.PS. Selvadurai /| Computers & Geosciences 35 (2009) 438-445 441

transforms (see e.g. Carslaw and Jaeger, 1986). The
solution for the initial boundary value problem defined
y (3)-(6) is given by

oR, t)_aqsoerfc( a) (11)

2Dt

where erfc(x) is the complimentary error function defined
by

P
fcx)=1-—"= -~ d 12
erfc(x) \/ﬁ./o e 4 (12)

Using the analytical solution (11), the flow potential at
the interface between the finite computational domain
and infinite element, i.e. R=Db, can be expressed as
follows:

¢(b,t) = ¢0erfc< (13)

7
where 1 = ((b — a)/(2+/D)). Therefore, the flow potential at
any point within the infinite element, say b+¢&, can be
expressed as

¢(b+&.0) = p(b,OF(E, ) (14)

where £>0. In (14), F(¢,t) is referred to as a mass transfer
function of the infinite element, which takes the following
form:

_ 1 b b+¢é-a
F(é’t)_erfc(i/«/f) b+§erfc< 2+/Dt ) (15)

It is evident from the Eq. (14) that the mass transfer
function can be considered as the shape function in the
infinite element, i.e. N: = F(&,t). In the infinite element,
such a shape function has the following derivative:

ON:  BF(.D)
o0&~ O&
-b 1 <b + & - ) 1 1
= erfc +
erfc(1//1) | (b + &) 2+/Dt b+ ¢ /nDt

b+¢— a> 2
exp| —(—=——=— 16
P < ( 2Dt (18)
Substituting the shape function in (15) and its deriva-
tive in (16) to the weak form (10) of the diffusion Eq. (3),
we obtain the following the integro-differential equation

for the flow potential ¢,: at the left hand side of the
infinite element, i.e. R = b*,

Ky ¢y + Mpe a“gf* =0 (17)
where
Ky = aal\é aal\{ (b+&)* dé¢
B erfc(/l/\ﬁ)2
x ./;wD{bléerfc(b—szD__tﬂ
+\/%exp<—<b;§ﬁ_ta>2>} dé (18a)

> . b * o (b+é—a\’ .

M, = N:Ny(b + &? dé = f( )d
b /o Ne(b+o)de erfc(i/\/f)z./() ere 2+/Dt ¢
(18b)

The infinite integrals involved in (18a) and (18b) can be
evaluated by the adaptive Simpson’s quadrature (Gander
and Gautschi, 2000).

4. Finite-infinite element coupling procedures
4.1. Finite element model

The finite element model for the spherically symmetric
subsurface flow problem described in Section 2 can be
easily constructed using the scientific finite element
computational software package COMSOL Multiphysics.
Several modes available in COMSOL Multiphysics can be
used for this purpose; the convection-diffusion equation
(CDE) mode was chosen to create the finite element model
for the numerical simulation because of its flexibility on
definition of equation coefficients and application of
boundary conditions (COMSOL Multiphysics Modeling
Guide, 2005a). It is implied from the weak form (10) that
the spherically symmetric flow problem can be described
by a one-dimensional diffusion equation with spatially
varied mass and diffusion coefficients, e.g. R*> and DR?.

In addition to the governing PDE, two boundary
conditions need to be applied at both ends of the
truncated region for computational purposes. The cavity
flow potential ¢o can be used as a Dirichlet boundary
condition on the left hand side of the finite computational
domain R = q, i.e. ¢(a,t) = ¢po. However, special attention
should be paid to defining the boundary condition on the
right hand side of the computational domain, i.e. R= b,
the interface between the finite element and infinite
element. As mentioned previously, the boundary condi-
tion at this point should include the influence of the flow
potential in the exterior unbounded region on that in the
finite computational domain. For this purpose, the infinite
element described by the integro-differential Eq. (17) will
be coupled to the finite element model that is created by
COMSOL Multiphysics; such a finite element-infinite
element coupling procedure can be implemented using a
Neumann coupling boundary condition at R = b, leading
to a C'- continuity of the solution at the interface between
the finite element and infinite element. In order to make
the concept more clear, a C°~continuous Dirichlet bound-
ary coupling procedure will be introduced first in the
following section.

4.2. (%-continuous Dirichlet boundary condition

Due to the fact that the truncated boundary R=b is a
connection point between the finite computational do-
main and the exterior unbounded region, the flow
potential at R=b should include the contributions of
the flow potential from these two regions. As mentioned
in the previous sections, the flow potential in the internal
bounded region can be determined by the finite element
model based on the governing diffusion Eq. (3); the flow
potential in the exterior unbounded region can be
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described by an infinite element using the integro-
differential Eq. (17). This implies that the flow potential
at R = b should be governed by the following coupling
equation:

O+ 0 0 0
M+ ‘gf + Ky by + (Rzﬁ—f—nﬁmZ% )R_bi =0

(19)

where ¢| rp- Tepresents the flow potential at the right
hand side of the interior computational domain, i.e.
R=>b", and ¢, represents the flow potential at the left-
hand side of the infinite element, i.e., R = b*. The multi-
plication of R? to the diffusion equation included in the
bracket in the left-hand side of (19) is due to the
implementation of the spherically symmetrical governing
Eq. (3) in terms of the weak form at the truncated
boundary. Substituting the value of ¢ at R = b~, obtained
from the finite element model, into (19) and solving the
resulting equation for ¢+, we obtain a flow potential ¢, at
R =0b, which includes the contribution of the flow
potentials from both finite and infinite elements. Once
this is determined, the flow potential ¢, can be used as a
Dirichlet boundary condition at the truncated boundary in
the finite element model for the determination of the flow
potential distribution in the finite computational domain
a<R<b during the second part of the iteration loop,
which will be terminated when the state is stabilized.
Fig. 2 gives a schematic illustration of this finite element-
infinite element coupling procedure at the boundary
R =b, which includes the determination of the flow
potential in two different geometric dimensions, e.g. both
over a line and at a single point. As described previously,
the flow potential distribution over the finite radial
distance is modeled using the CDE mode. The flow
potential on the truncated boundary at point R=b
determined by (19) can be modeled with the boundary
weak form of the PDE mode embedded in COMSOL
Multiphysics (COMSOL Multiphysics Modeling Guide,
2005b).

4.3. C'-continuous Neumann boundary condition

Applying the Dirichlet condition at the truncated
boundary R=b only ensures C°-continuity of the flow
potential at this point. However, the fact that the point
R = b is a physically internal boundary within the entire
physical domain implies that both the flow potential
and its first spatial derivative in the normal direction
should be continuous across this point, leading to a set of
C'-continuous conditions as follows:

Plpy = Plepr = Pi (20)

0 ., ob,. ) 0 20
R=-D—(R2)=0 ym ik ¢ +RL_DI(RZ =0
o OR OR " o ot 6R( 6R) s

L Nl

0 a — b "R
Dirichletb.c. ¢ =0,

Fig. 2. A schematic illustration of finite-infinite element coupling
procedure with a Dirichlet boundary condition at boundary R = b.

o _09

OR|g_p-  OR|p_p+
_ 0y __ady 1 <i) L S
=R ="} berfc i + _nDtexp r

(21)

The expression on the right-hand side of Eq. (21) is
obtained from the analytical solution given by (11).
Substituting (20) to (19) gives the following integro-
differential equation for the flow potential ¢ on the
boundary R=b

ot PR\ R ok

Again, R? needs to be multiplied by the corresponding
temporal and spatial derivative terms of the dependent
variable ¢ in order to implement the spherically sym-
metric equation using the weak form at the truncated
boundary. It is implied from (22) that two terms,
represented by M,:0¢ /0t and K+ ¢ on the left-hand side
of (22), should be added to the original governing
diffusion Eq. (3) at the truncated boundary R = b due to
the consideration of the contribution from the flow
potential in the infinite element. These additions can be
easily implemented in COMSOL using its embedded
boundary weak form of the CDE mode. Besides, it is
implied from (21) that a Neumann boundary condition
should be applied at R = b to ensure the C'-continuity of
the flow potential at this point. Fig. 3 gives a schematic
illustration of the boundary governing equation and the
Neumann boundary condition at R=b of the finite
element model in order to couple the infinite element
for the exterior domain. It can be seen that compared with
the finite and infinite element coupling procedure using
(®-continuous Dirichlet boundary condition described in
the previous section, no iteration loop is necessary in
the finite and infinite element coupling procedure using
C'-continuous Neumann boundary condition described in
the this section since only one flow potential is involved in
the linear computation.

(R? +M,,+)a¢’ 0 <R2 %> +Ky¢p=0 (22)

5. Numerical computations

As a numerical example, we considered a spherically
symmetric flow transport problem in an infinite porous
region with a hydraulic conductivity of k = 0.03 m/day
and a porosity of n* = 0.3. The porous aquifer material and
pore fluid were assumed to be compressible and have
compressibilities of C;=1.0x1078m?/N and Cr=4.4 x
10~°m?|N, respectively (Freeze and Cherry, 1979). The
flow is initiated by a flow potential ¢y = 100 m applied in

2 % _p0 g0 - 2 _ 0,
(R +M"')at DaR(R aR)+Kb+i1>—0 Neumann b.c. R oR
0 a b R

Fig. 3. A schematic illustration of boundary governing equation and
Neumann boundary condition at boundary R=0b in finite-infinite
element model.
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the central spherical cavity with a radius of a = 3 m and is
subject to the regularity condition of the flow potential at
the infinity of the porous region. The finite element model
created with the CDE mode in COMSOL Multiphysics, as
described in the previous section, was used to investigate
the flow potential distribution in a truncated finite
domain of a<R<b with b=3m. Two finite element-
infinite element coupling procedures described in Section
4 were used in the finite element model to incorporate the
regularity condition of the flow potential at the infinity of
the porous region, using either a C°-continuous Dirichlet
or a C'-continuous Neumann boundary condition at the
truncated boundary R=b. The quadratic element and
default time-dependent solver embedded in COMSOL
Multiphysics were used in the finite element modeling.
The numerical results of time-dependent flow potential
distributions over the finite computational domain
a<R<b within a 100-day period, obtained from two
finite-infinite element models, are shown in Fig. 4(a) and
(b), respectively. As a comparison, the corresponding
analytical solution over the finite computational domain,
obtained from Eq. (11), is shown in Fig. 4(c); it can be
seen that the flow potential reaches an almost steady
state after 10 days. Fig. 5 shows the comparisons of
the numerical results with the analytical solution of the
spatial distribution of flow potential over the finite
computational domain at t = 100 days, as well as their
temporal developments at the boundary R = b. It can be
seen from Fig. 5 that both finite-infinite element models
can generate numerical solutions that are close to the
analytical solution; The relative numerical errors of two
coupling procedures to the analytical solution at the
truncated boundary, defined by (¢num—®Pana)/Panes iN-
creases from zero at the beginning of the computation
to maximum values of 12.4% and 5.6%, respectively, at 7th
day when the flow potential starts to approach its final
stable stage; and then they drop to 8.7% and 2.4%,
respectively, at the end of computation of 100th day.
As can be expected, the coupling approach with the
Neumann boundary coupling procedure behaves better
due to the satisfaction of the C'-continuity of the solution
at the truncated boundary. It can be also expected that
these relative errors at the finite and infinite element
interface can be decreased when the truncation boundary
is located remote from the central cavity.

It should be noted from Fig. 5 that the flow potential at
the truncated boundary R = b is time-dependent due to
the initial condition and the compressible property of the
porous system. Such time-dependence of the flow poten-
tial distribution at the truncated boundary can also be
induced by the variation in the cavity boundary condition.
This connection between the flow potential distribution at
the truncated boundary and the cavity boundary condi-
tion can be illustrated by the numerical computation of a
flow transport with a time-decaying boundary condition
applied in the cavity

#o = doexp(-6.07¢) (23)

The finite element-infinite element coupling approach
with a C'-continuous Neumann boundary condition at the

a

Fig. 4. Time-dependent distributions of flow potential over finite
computational domain in a 100-day period, obtained from (a) finite-
infinite element model with (°-continuous Dirichlet coupling b.c.,
(b) finite-infinite element model with C'-continuous Neumann coupling
b.c., and (c) analytical solution.

truncated boundary is used in the ensuing computations.
The corresponding numerical results of the flow potential
distribution over the computational domain in a 100-day
period are shown in Fig. 6, in which the time-decaying
characteristic of the flow potential at the outer boundary
R = b can be observed.

Finally, the following cavity boundary condition that
includes a discontinuous pulse is considered

$o.  0<t<40
do=1{ 0 40<t<60 (24)
¢o. 60<t<100

It can be seen from the numerical results shown in Fig. 7
that the step variation in the cavity boundary condition of
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Fig. 5. Comparisons of numerical results with analytical solution of flow
potential, (a) spatial distribution over finite computational domain at
t = 100 days and (b) temporal development at boundary R = b.

30

ot P 10 %

Fig. 6. Numerical results of flow potential distribution over finite
computational domain in a 100-day period corresponding to time-
decaying cavity boundary condition.

the flow potential has an apparent influence on the flow
potential distribution at the truncated boundary of the
finite computational domain. The corresponding numer-
ical result of the temporal development of the flow
potential at the truncated boundary during a 100-day
period is shown in Fig. 8. It is implied from this
computation that the flow potential distribution shown
in Fig. 8 should be chosen as the appropriate boundary
condition at the truncated boundary, so that the finite
element model gives the correct solution, in a truncated

15
0 0 3 R

Fig. 7. Numerical results of flow potential distribution over finite
computational domain in a 100-day period corresponding to discontin-
uous cavity boundary condition.

20 T T T T

0 1 1 1
0 20 40 60 80 100

t

Fig. 8. Numerical result of flow potential distribution at boundary R = b
during a 100-day period corresponding to discontinuous cavity bound-
ary condition.

domain, to the transport problem with the discontinuous
cavity boundary condition, as given in (24). It can be
concluded that using the finite element-infinite element
coupling procedures presented in Section 4, the appro-
priate truncated boundary condition can be incorporated
in the finite element model for the unbounded flow
transport problem; and such finite element-infinite ele-
ment coupling at the truncated boundary can be easily
implemented using the boundary PDE weak form em-
bedded in COMSOL Multiphysics without a great deal of
programming effort.

6. Conclusions

Current concerns of subsurface transport problems in
the field of geoseciences usually include multi-physics
couplings. More and more researchers and engineers are
tending to rely on the existing well developed finite
element computational package, e.g. COMSOL Multiphy-
sics, for the solutions of the interdisciplinary problems
rather than writing their own program code. For the FEM
to give accurate solutions to the problem that involves
unbounded domain, appropriate artificial boundary con-
ditions should be applied at truncated boundaries, e.g.
absorbing b.c. in modeling the acoustic propagation.
These artificial truncated boundary conditions can be
obtained by coupling infinite element to FEM. However,
conventional finite and infinite element coupling proce-
dures are usually implemented through the combination
of the property matrix of the infinite element and the
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stiffness matrix of finite elements at the common nodes.
Corresponding programming efforts usually limit its
applications to a variety of engineering problems and
especially to the well developed commercial finite
element computational codes.

Due to this consideration, a general concept of an
infinite element for transient flow problems is reviewed
based on a flow transport example in a spherically
symmetrical porous region. Then, a coupling procedure
of finite and infinite elements is described by means of a
boundary integro-differential equation instead of at the
matrix level, making the coupling procedure clearer. This
integro-differential equation finally has to be implemen-
ted in coding at the overall matrix formulation, but this
task is done by COMSOL Multiphysics using its embedded
PDE weak form formulation. In the proposed finite-infinite
element coupling procedure, on the other hand, a
Neumann boundary condition is also introduced at the
truncated boundary to satisfy C'-continuity of the solu-
tion at the interface between the bounded interior domain
and unbounded exterior domain. Although the description
is based on a spherically symmetrical flow transport
problem, the proposed finite and infinite element cou-
pling procedure is general and can be applied to the other
unbounded domain problems as long as their shape
function (that can be obtained from the analytical solution
of the problem) for the exterior region is available.
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