

Laser Heating – A Self Guided Tutorial

Introduction

- This series of tutorials show how to simulate laser heating of glass.
- The heating due to laser is treated as a body heat source.
- The scenarios investigated are:
 - Stationary laser with constant power CW mode
 - Stationary laser with pulsed power Pulsed mode
 - Moving laser with constant power CW mode

- Material properties are assumed to be constant.
- The electromagnetics of the laser beam is not simulated.
- The effect of electromagnetic wavelength is not explicitly modeled.
- The effect of complex refractive index of glass is modeled using an absorption and reflection coefficient.
- The simulation does not involve modeling phase change.

Model Definition

- The modeling geometry only includes the glass slab.
- Except the top surface, all other boundaries are assumed to be thermally insulated.
- The heat flux on the top surface simulates convective cooling.

Calculating the heat input

• The body heat load within the glass slab is given by the following expression.

Reference: "Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica," Steven T. Yang, Manyalibo J. Matthews, Selim Elhadj, Diane Cooke, Gabriel M. Guss, Vaughn G. Draggoo, and Paul J. Wegner. *Applied Optics*, Vol. **49**, No. 14, 10 May 2010.

Information on model implementation

- The reflection and absorption coefficients are assumed to be constants.
- The planar surface of the glass slab incident to the laser beam is assumed to be aligned with the *xy*-plane of the global coordinate system.
- The top planar surface is aligned with *z* = 0. Hence the effect of absorption can be simulated by the term exp(-Ac*abs(z)).
- The center of the beam can be easily shifted by changing x_0 and y_0 .
- The beam width and astigmatism can be easily controlled by the standard deviation parameters; σ_x and σ_y .

Case 1: Stationary laser with constant power

• This model investigates the transient heating of a glass slab when an incident laser beam in CW mode shines upon it for a given time.

Modeling Instructions

- The next few slides show the modeling steps and snapshots of the solution.
- For details refer to the model file: *laser_heat_transient_CW.mph*

Select Space Dimension

Add Physics

 Heat Transfer > Heat Transfer in Solids (ht)

💴 Model Wizard 🛄 Model Library	- 8
Select Study Type	💠 🔿 🥞
– Studies	
Preset Studies Stationary Time Dependent Custom Studies	
- Selected physics	
🝋 Heat Transfer in Solids (ht)	

Parameters

These numerical values are arbitrary and only for illustration purposes

Global Definitions > Functions > Analytic

Variables

ı 🔞 lase	r_heat_tra	nsient_CW.mph		
⊳ ≡ (Global De	finitions		
4 🚺	Model 1 (/	mod1)		
4	\Xi Definit	tions		
	a= Va	riables 1a		
a	- Varia	bles		
-				
	Geometri	c Entity Selection		
	Geometri	c entity level: Entire model		-
	ocomean	e childy level.		
1	▼ Variabl	PC .		
	variabi			
	Name	Expression	Unit	Description

The actual geometry

This elliptical surface created on the top surface is used to guide a finer mesh in the area where the laser beam is incident upon

Material properties

Heat Transfer > Heat Source

Heat Transfer > Heat Flux

Technical note on meshing

- We created an extra elliptical boundary on the top surface to represent the zone of heat input.
- The shape and position of this ellipse is parameterized.
- Use a fine enough mesh only on this ellipse to resolve the Gaussian pulse.
- Try to keep the overall mesh count low by using a swept mesh.
- * If the absorption coefficient is very large then the heat source would be only effective near the top surface. This would require you to create a graded swept mesh with more layers.

🕂 Model Builder 🛛 🗆 🗖	Settings III Model Library	Q - D
	🐚 Time Dependent	
a 🔯 laser_heat_transient_CW.mph (rooi		
Global Definitions	 Study Settings 	
a 🚺 Model 1 (mod1)		
Definitions	Times: range(0,5,300)	s 🛄
K Geometry 1	Relative tolerance:	
Materials		
Heat Transfer (ht)	Results While Solving	
Mesh 1	V Results While Solving	
Study 1	 Mesh Selection 	
📐 Step 1: Time Dependent		

Results – Isosurface Temperature

Time=0 Arrow Volume: Temperature gradient

Enable slide show to see the movie

Temperature vs. Time

Slice plots of temperature

COMSOL

Slice plots of heat input

COMSOL

Temperature along top surface

Heat input along top surface

Temperature along thickness

Heat input along thickness

COMSOL

Things to try

- Use an Extremely Coarse mesh and solve the model again. How does the solution look?
- Go to Global Definitions > Parameters and use a much smaller value of sigx and sigy. Is the same mesh good enough?

Case 2: Stationary laser with pulsed power

 This model investigates the transient heating of a glass slab when an incident laser beam in pulsed mode shines upon it for a given time.

- The next few slides show the modeling steps and snapshots of the solution.
- You can start from the previous model and make changes or add new steps as shown in the following slides.
- For details refer to the model file: *laser_heat_transient_pulsed.mph*

Parameters

Pi Parameters

▼ Parameters

Note that the value of **Q0** is an arbitrary high number that is chosen for illustration purposes only.

Name	Expression	Value	Description
x0	0.5[mm]	5.0000E-4 m	Pulse center x-coordinate
y0	0[mm]	0 m	Pulse center y-ccordinate
sigx	0.5[mm]	5.0000E-4 m	Pulse x standard deviation
sigy	0.75[mm]	7.5000E-4 m	Pulse y standard deviation
Q0	1[MW]	1.0000E6 W	Total laser power
Rc	0.05	0.050000	Reflection coefficient
Ac	0.5[1/cm]	50.000 1/m	Absorption coefficient
L	20[mm]	0.020000 m	Slab size
Lz	5[mm]	0.0050000 m	Slab thickness
pulse_wid	10[ns]	1.0000E-8 s	Temporal pulse width
time_step	pulse_width/5	2.0000E-9 s	Time step to store solution
end_time	0.2[us]	2.0000E-7 s	Last time step

Global Definitions > Functions > Triangle

∧ Triangle		
▼ Function Name		
Function name: tri1		
▼ Parameters		
Lower limit: pulse_width/2		
Upper limit: pulse_width/2+pulse_width		
▼ Smoothing		
Size of transition zone: 📝 pulse_width/10		

Global Definitions > Functions > Analytic

This approach can be used to create a series of periodic triangular pulses with variable duty cycle

👬 Analytic		
▼ Function Name		
Function name: an2		
▼ Parameters		
Expression:	tri1(x)	
Arguments:	x	
Derivatives:	Automatic	
✓ Periodic Extension ✓ Make periodic		
Lower limit: 0		
Upper limit: 2*pulse_width		
✓ Units		
Arguments: s		
Function:		

Variables

Time-Dependent Study

- For illustration purposes we have chosen the end_time such that this model will simulate only ten pulses.
- Note that solving for a longer time scale will involve more computational time and memory.

Results – Temperature at the center of beam spot as a function of time

COMSOL

Results – Heat input at the center of beam spot as a function of time

COMSOL

Suggestions on time stepping

- The choice of *intermediate* steps provides better resolution of the solution over time without saving the solution at too many small time steps.
- This choice could be useful when the input to the model are short pulses.
- The default *free* time stepping may completely ignore these pulses.
- The *intermediate* option involves more computational time than the default *free* option.
- Hence we should always solve the model once with the default *free* time stepping and inspect the solution to see whether it is lacking any physical behavior.

Solving the same model with free time stepping algorithm

- Temperature vs. time behavior does not look correct!
- Maximum temperature is underpredicted.

• Heat input profile is accurately captured.

Case 3: Moving laser with constant power

- This model investigates the transient heating of a glass slab when an incident laser beam in CW mode shines upon it for a given time.
- The laser beam also moves over the surface at a given speed along a prescribed path.

- The next few slides show the modeling steps and snapshots of the solution.
- You can start from the first model and make changes or add new steps as shown in the following slides.
- For details refer to the model file: laser_heat_transient_CW_moving.mph

Parameters

Pi Parameters

Parameters

These numerical values are arbitrary and only for illustration purposes

Name Expression Value Description Path center x-coordinate х0 0[mm] 0 m 0 m y0 0[mm] Path center y-ccordinate 0.25[mm] 2.5000E-4 m sigx Pulse x standard deviation 0.25[mm] 2.5000E-4 m sigy Pulse y standard deviation Q0 1.0000 W Total laser power 1[W] 0.05 Rc Reflection coefficient 0.050000 0.5[1/cm] 50.000 1/m Ac Absorption coefficient Slab size L 40[mm] 0.040000 m 5[mm] 0.0050000 m Slab thickness Lz rad 10[mm] 0.010000 m Laser path radius 1[mm/s] 0.0010000 m/s Laser velocity v v/rad 0.10000 1/s Angular velocity omega time_end 2*pi/omega 62.832 s Last time step time_step time_end/50 1.2566 s Time step

Variables

Geometry

- We create extra geometric edges on the top surface which outline the path of laser motion.
- These edges are used to guide a finer mesh only along the path of laser motion.
- Although we use a circular path in this tutorial, in general you could create any arbitrary path using the Parametric Curve or Interpolation Curve geometry features.

🥬 Parametric Curve

▼ Parameter

Name: s Minimum: 0

Maximum: 2*pi

- Expressions
- x: x0+rad*cos(s)
- y: y0+rad*sin(s)

z: 0

 Object Type 		
Type: Solid		
▼ Size and Shap		
Width	: L	
Depth	: L	
Height: Lz		
▼ Position		
Base:	Center	
x:	0	
y:	0	
z:	-Lz/2	
-		

Block

COMSOL

Time-Dependent Study

 For illustration purposes we have chosen the *time_end* such that this model will simulate one revolution of the laser beam along the circular path.

Results – Moving laser beam

Time=0 Surface: Power input (W/m³)

Enable slide show to see the movie

Results – Temperature profile

Time=0 Surface: Temperature (K)

Enable slide show to see the movie

Results – Temperature profile

Temperature profile along the path of laser motion at different times.

Summary

- This tutorial showed how to model transient heat conduction in a glass slab heated by a laser beam.
- Three different modes of operation were investigated.
 - Stationary laser emitting constant power
 - Stationary laser emitting power pulses
 - Moving laser emitting constant power
- The tutorial emphasizes on the use of functions to model the laser power as a body heat source.
- Several key design variables have been parameterized.
- Suggestions on meshing and solver settings were provided.

