I am calculating one model including two parallel gratings. I want to calculate the transmission and reflection coefficients of two gratings. The incident angle of the light α can vary from 0 to $\mathrm{pi} / 2$.

Different from the model of "Plasmonic Wire Grating", where they use S-parameters and "port", I used a scattering field and PMLs shown as the following figure.

I respectively integrated the outflow powers by ewm.nPoav at the bottom and top, donated by P_bot and P_{-}top.

The transmission coefficient will be calculated by T=P_bot/I, where I is the total power of the incident light. And the reflection coefficient is expressed by $R=\left(P _t o p+I\right) / I$.

Note in above expression, the outflow at the top boundary contains two parts: the reflected light
$(+)$ and the incident light (also is equal to the total power I). Therefore, the actual reflection is P_top+I

Moreover, the total power of the incident light I can be calculated by this way:

Change the refractive index of the gratings into 1. There is no any grating at this circumstance. calculate the out flow power at the bottom P'_bot: so the total power of the incident light under different incident angle is $\mathrm{I}^{*} \cos \alpha=\mathrm{P}^{\prime} _$bot ${ }^{*} \cos \alpha$, where α is the incident angle. Finally we can calculate R and T .

However, in my calculation I choose $\alpha=0$, when there is no grating ($\mathrm{n}=1$), P _bot $=-\mathrm{P}$ _top= $8.29506 \mathrm{e}-$ 11. That is reasonable and $\mathrm{I}=8.29506 \mathrm{e}-11$. But when the grating index is changed into 1.5 , the outflow power at the bottom is $4.20396 \mathrm{e}-10$, which is bigger than $=8.29506 \mathrm{e}-11$. It is unreasonable?

I am so confused by this calculation. By the way, is there any successful example by calculation the R / T coefficients for three media?

