ICP

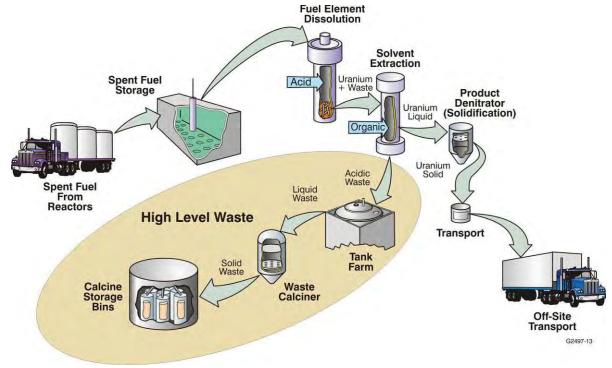
IDAHO CLEANUP PROJECT

Densification and Shape Change of Calcined High Level Waste during Hot-Isostatic Pressing

Troy P. Burnett, P.E. Danielle E. Lower

Presented at the COMSOL Conference, October 2011

CH2M+WG

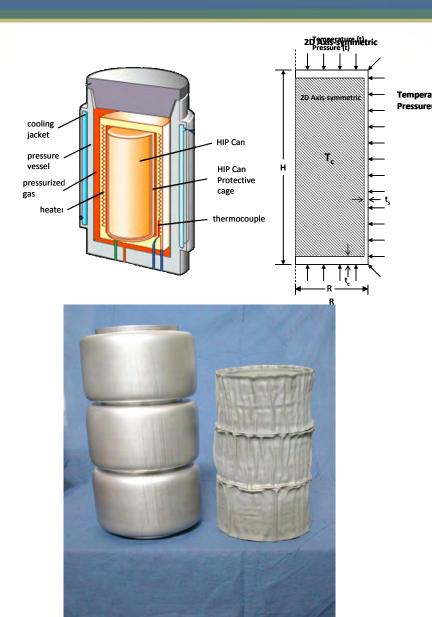

IDAHO, LLC

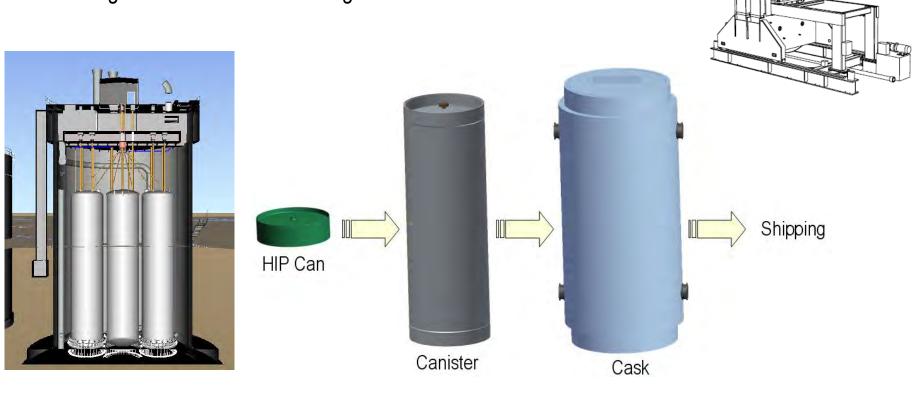
SAFELY PLAN . MOTIVATE . DELIVER

- Troy P. Burnett, P.E.
 - BS Engineering Idaho State University
 - Practicing engineering for 11 years
 - Working on the Calcine Disposition Project for two years
- Danielle E. Lower
 - BS Mechanical Engineering University of Idaho
 - MS Mechanical Engineering Montana State University
 - Naval Reactors Facility
- CH2M-WG Idaho (CWI)
 - Contracted to perform work on the Idaho Cleanup Project for the Idaho National Laboratory


- History of Calcine and the Calcine Disposition Project (CDP)
 - The lab received spent nuclear fuel from all over the world
 - Processed fuel from 1953 until 1992
 - Used solvent extraction to separate Uranium
 - Conversion of liquid, high-level radioactive waste to solid by calcination process (high temperature drying)

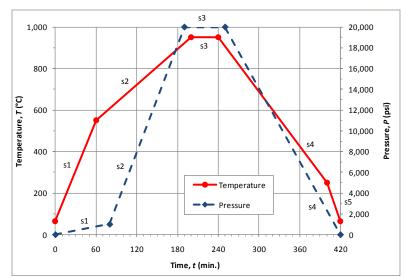
CH2M+WG


- What is calcine?
 - Dry granular powder
 - Stored in large bins
 - 12.2 million pounds of calcine
 - 4,400 cubic meters
 - Highly radioactive
 - All handling is done by remote equipment
 - Must be confined in shielded cells at all times
 - Leachable
- Purpose of the Calcine Disposition Project
 - Create a stable, long term waste form
 - Process calcine using Hot Isostatic Pressing technology (HIP)

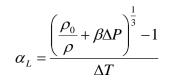


- Hot Isostatic Pressing (HIP)
 - HIP process
 - A process that is used to reduce the porosity and increases the density of metals and ceramics.
 - Materials are exposed to a high temperature and pressure environment.
 - HIP uses
 - Aerospace industry Turbine blades
 - Automotive industry Turbo chargers, Valves
 - Medical industry Prosthetic devices
 - Petroleum industry Valve bodies
 - HIP use for the Calcine Disposition Project
 - Densification of ceramic powder
 - Create a stable monolithic waste form

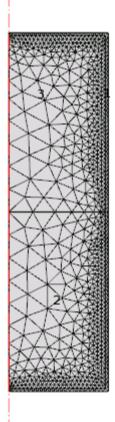
- The Calcine Disposition Project
 - Retrieve high level waste (HLW) calcine from storage bins
 - Package in Hot Isostatic Press (HIP) can
 - Process filled HIP can using Hot Isostatic Press
 - Package HIP treated can in storage canister



- Calcine Disposition Project FEA program
 - Abaqus and COMSOL are being used for analysis of the HIP process as well as the design of process equipment.
 - The focus of this paper is on the analysis of the HIP can
 - The goal for analysis of the HIP can is to accurately predict:
 - HIP can performance
 - Final shape of the HIP can
 - Temperature profile
 - Densification of calcine
 - The modeling effort will be a multi step process
 - We are currently in the first stage of the analysis program
 - Will use FEA to streamline the design
 - Large amounts of experimental data will be obtained to validate the FEA
 - The ultimate goal is to incorporate the FEA into the daily facility operations and controls



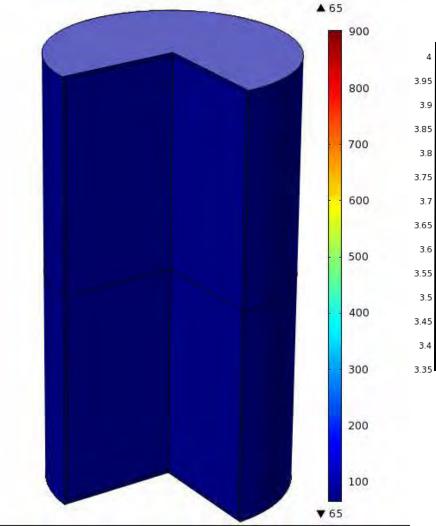
- Challenges of the analysis
 - This is a transient analysis
 - High temperature 1000 °C
 - High Pressure 10 to 20 ksi
 - Large deformation and large strain >30%
 - Multiphysics couplings heat transfer, solid mechanics, moving mesh, ODE, chemistry, contact, fluid flow
- Known COMSOL analysis limitations
 - Doesn't handle large strain large deformation
 - Working with COMSOL to improve in this area
 - Alpha version coming soon
- Current analysis approach
 - Empirical approach modification of thermal expansion coefficient
 - Microscopic approach deformation mechanisms using ODE

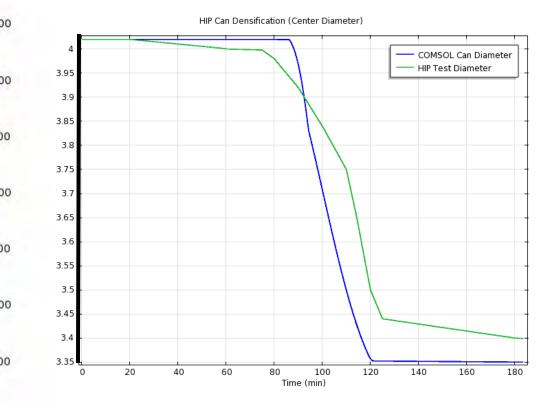


CH2M+WO

- Empirical Approach Modified Thermal Expansion Coefficient
 - Equations of State
 - Function of temperature and pressure
 - Use equations of state to derive coefficient
 - First-level approximation of volumetric properties
 - Tait equation
 - Spencer-Gilmore Equation
 - Thermal expansion coefficient
 - Linear Volume change:

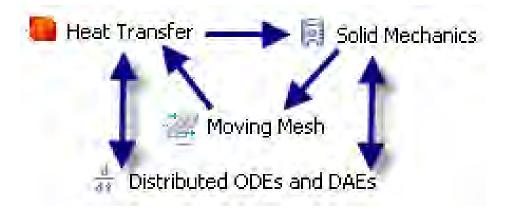
- ρ and ρ_0 are the final and initial material density
- β is the material compressibility coefficient
- Δp is the localized change in pressure
- ΔT is the localized change in temperature.




CH2M+WG

Thermal Expansion Coefficient

Time=0 Surface: Temperature (degC)

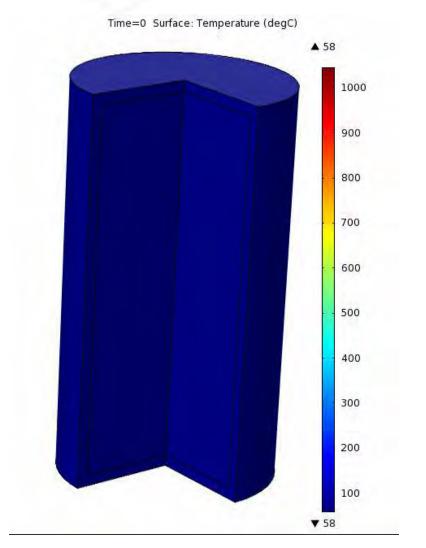


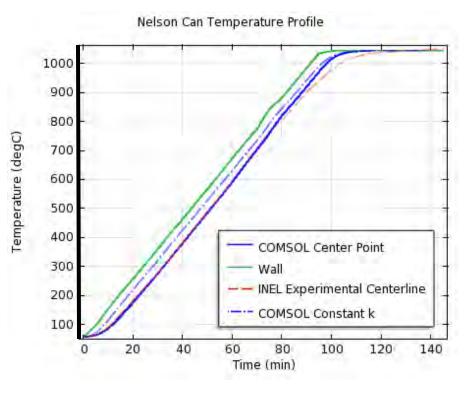

- Microscopic Approach
 - M.F. Ashby Deformation Mechanisms
 - Plastic Yielding
 - Power-law creep
 - Diffusion
 - Densification Rate equations
 - Pressure
 - Temperature
 - Relative density
 - Grain size
 - COMSOL Model
 - Heat transfer
 - Solid Mechanics
 - Moving Mesh
 - Distributed ODE's

$$\frac{\mathrm{d}}{\mathrm{dt}}\mathrm{D} = \mathrm{K}_{\mathrm{D}} \cdot \mathrm{f}(\mathrm{D})$$

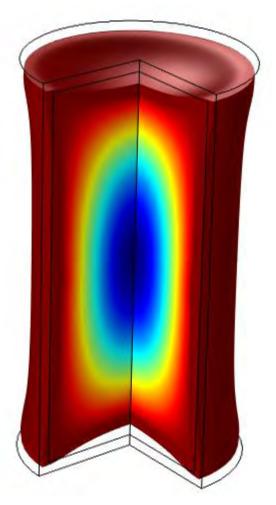
CH2M+WG

- The densification process during HIP
 - Random packing in contact with approximately 7 other particles
 - Particle centers must move together for densification





CH2M+W



Deformation Mechanisms

- Conclusion
 - The two methods show good agreement with experimental results in the shape change, densification, and temperature profile
- Future analysis
 - Incorporate plasticity in the can
 - Incorporate large strain and large deformation
 - Include contact between the can and calcine
 - Include the chemical reactions in the calcine
- Ultimate goal
 - High fidelity analytical model
 - Use analytic results to validate HIP can performance before the first radioactive can is treated
 - Use analysis in the daily operation and control of the facility

