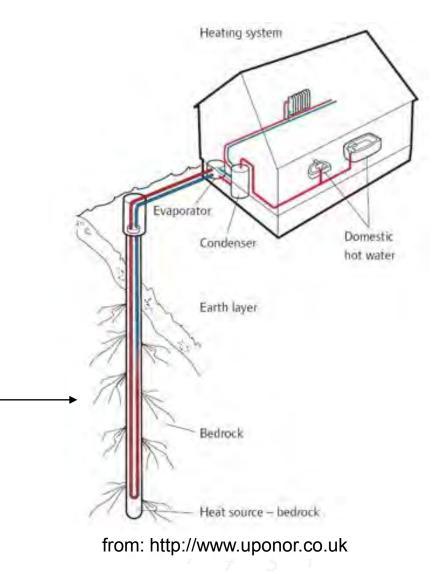
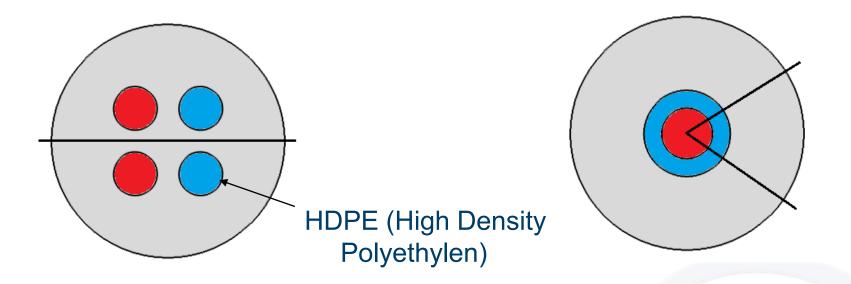


Comparison of Borehole Heat Exchangers (BHEs): State of the Art vs. Novel Design Approaches

Phillip Oberdorfer Georg-August-University Göttingen

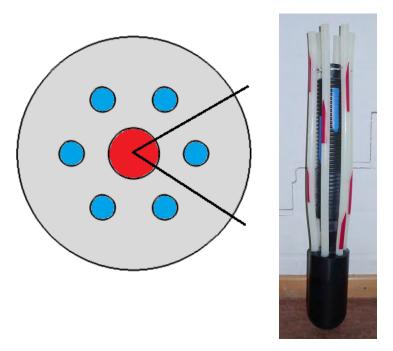

COMSOL Conference 2011, Oct 26-28, Stuttgart


Geothermal Heat Production in Low Depth

- Sustainable power source
- Heat is used for direct application
- Subsurface temperature distribution: 10m depth → 10°C
- Geothermal gradient ≈ 0.03°C/m
- Depth: ≈100m
- Ground-coupled heat exchange done by borehole heat exchangers (BHEs)
- Efficiency of heat exchange depends on ambient parameters and BHE-design

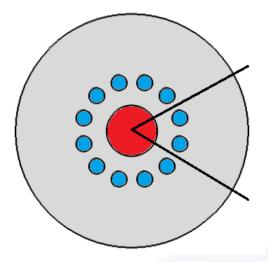
Types of BHEs: Common Designs

Double U-Pipe


- most common design
- two downward pipes leading in two upward pipes

Coaxial Pipe

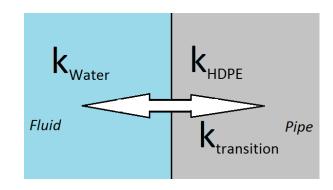
- centered downward pipe
- embedded in the upward pipe



Types of BHEs: Novel Designs

<u>Terra₆ Pipe (Terra Umweltsonde)</u>

- Centered downward pipe (isolated)
- Surrounded by six upward pipes



Terra₁₂ Pipe

- Centered downward pipe (isolated)
- Surrounded by twelve upward pipes

Heat Transfer in BHEs

- Thickness-Length-Ratio: ≈1/1000
- \rightarrow Flow in Pipe incomputable
- Solution: Calculate heat exchange between pipe and fluid manually
- Effective conductivity:

$$k_{1,eff}^{-1} = k_{HDPE}^{-1} + k_{transition}^{-1} = \frac{1}{h \cdot r_i \cdot \log\left(\frac{r_o}{r_i}\right)} + \frac{1}{k_{HDPE}}$$

Convection coefficient:

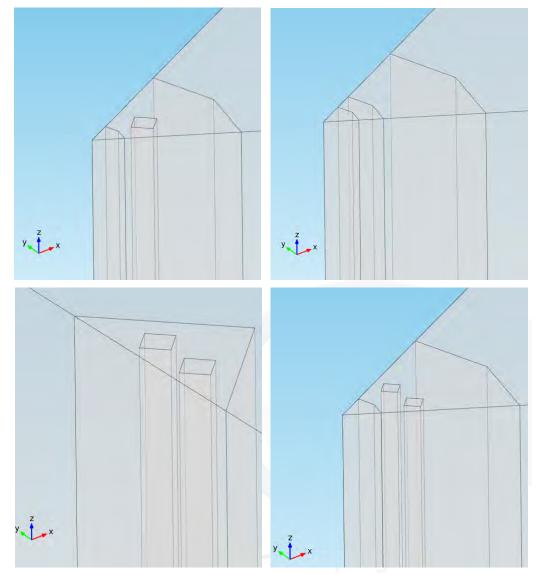
$$h = \frac{Nu \cdot k_w}{r_i}$$

Churchill-Bernstein-Correlation:

$$Nu = 0.3 + \frac{0.62 \operatorname{Re}^{1/2} \operatorname{Pr}^{1/3}}{\left(1 + (0.4/\operatorname{Pr})^{2/3}\right)^{1/4}} + \left(1 + \left(\frac{\operatorname{Re}}{28200}\right)^{5/8}\right)^{4/4}$$

Parameters

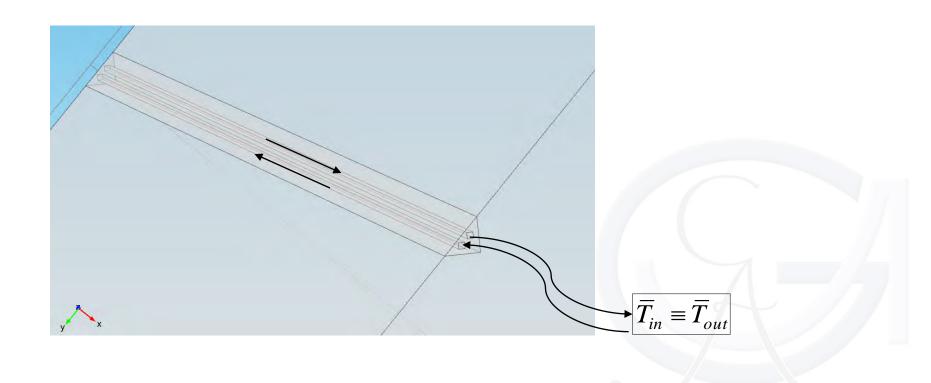
operties of G	rout
k _{grout}	$2[W/(m\cdot K)]$
$ ho_{\it grout}$	$1680 [kg/m^3]$
c _{p,grout}	$730[J/(kg \cdot K)]$
$\overline{}$	
	k_{grout} $ ho_{grout}$

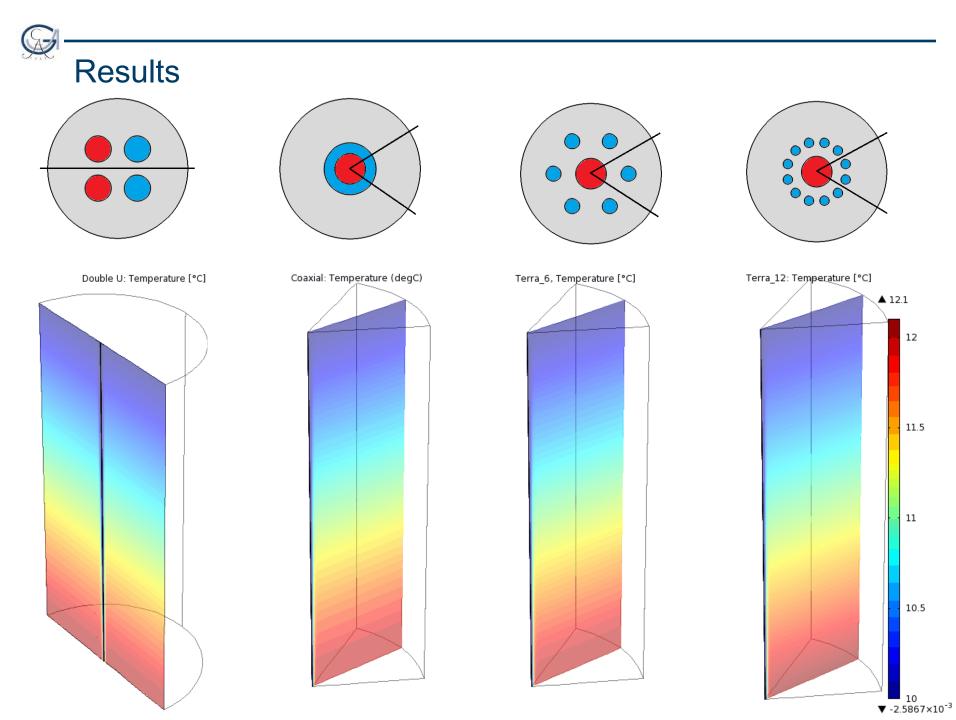

K

Properties of HDPE-BHEs			
Double U	type	32 <i>x</i> 2.9 [<i>mm</i>]	
Coaxial (out)		63 <i>x</i> 3.8[<i>mm</i>]	
Terra ₆ (out)		20 <i>x</i> 2[<i>mm</i>]	
Terra ₁₂ (out)	type	14x2[mm]	
Terra _{6,12} ,			
Coaxial (in)		40x3.7[mm]	
Pipe length	1	70[<i>m</i>]	
Therm.			
Conductivity	k _{HDPE}	$0.4[W/(m \cdot K)]$	
Therm. Cond.			
Isolated Pipe	k _{iso}	$0.04 \left[W / (m \cdot K) \right]$	

Pr	operties of Grou	und
Volume		
fraction	θ_s	0.75
Eff. thermal		
conductivity	$k_{2,eff}$	$2[W/(m\cdot K)]$
Eff. Density	$ ho_{\it eff}$	$2000[kg/m^3]$
Eff. Spec.		
Heat Capacity	$c_{p,eff}$	$1000[J/(kg \cdot K]]$

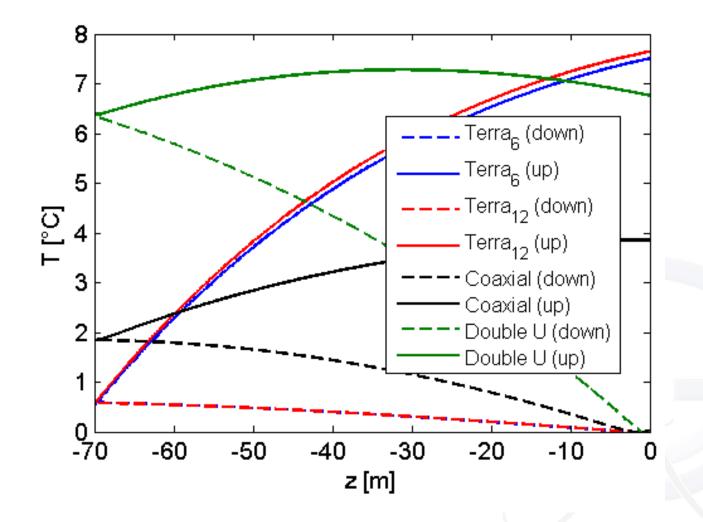
Model Set-Up in COMSOL Multiphysics®


- 3D-transient models
- Geometry: Use of symmetry planes
- Physical Modes: Heat transfer in fluids, solids and porous media
- BC: Geothermal Gradient, T_{in}=0°C
- Mesh: Manually meshed using free triangles on top and sweeping method to bottom

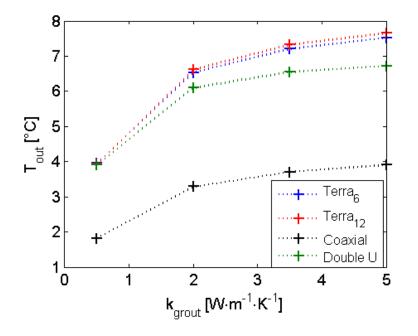


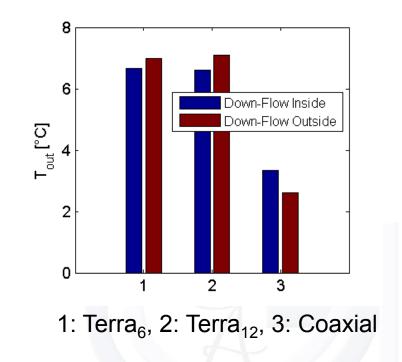
Model Set-Up in COMSOL Multiphysics®

- Reversal point: End of Geometry, temperature outflow
- Mean outflow temperature is measured and set as BC for reinjection


Results: Outflow Temperature

1 7 7 7


Results: Inner Heat Distribution



Results: Thermal Conductivity of Grout and Influence of Flow Direction

Influence of Th. Cond. Of Grout

Influence of Flow Direction

Conclusions and Lookout

- COMSOL Multiphysics works on long and thin geometries
- The comparison of different BHEs shows: There can be improvements achieved by design change and flow direction changes
- Further working indented: Adding porous media flow for more realistic models could change long-time behavior
- Field data verification of the models within our Project (GeoSolarWP)
- Use models for BHE field simulation

Thank you for your attention!

The project "Hocheffiziente Wärmepumpensysteme mit Geo- und Solarthermie- Nutzung" (High-efficient heat pump systems with geothermal and solar thermal energy sources, short name: GeoSolarWP) is funded by the European Union (European Regional Development Fund) and the Federal State of Lower Saxony.