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Abstract: This paper studies multicomponent 
transport through zirconia, assuming a chemical 
reaction involving electrons and oxygen 
vacancies defects. Classically, according to the 
Wagner theory for ambipolar diffusion, the 
electroneutrality condition in the oxide is 
considered. Therefore three constraints must be 
satisfied on the transport problem: oxide 
stoichiometry, electroneutrality and the source 
term coming from chemical reactions. The 
stoichiometry constraint prevents to solve the 
problem with the Nernst-Planck equation as 
implemented in COMSOL Multiphysics. This 
work is focused on a method to reduce the 
problems in just one transport equation keeping 
all constraints on the system. Simulation results 
from this modeling are linked to experimental 
oxide growth kinetics and discussed in the 
framework of available data in the literature. 
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1. Introduction 
 

Understanding defects transport in oxides is a 
mandatory step to grasp key factors controlling 
metal oxidation. A way to do this is to develop a 
model to study multicomponent transport 
coupled with an internal defects reaction. Here 
we study multicomponent transport through 
zirconia, considering an anionic conductivity and 
taking into account the following defects: 
  

     
    (using Kröger-Vink notation).  

To summarize, Figure 1 shows the defects 
and the chemical reaction taken into account in 
our model for multicomponent transport in 
zirconia during zirconium oxidation. 

 
 

 
 

Figure 1. The model developed here studies 
multicomponent transport through the oxide 
considering chemical reaction between defects. 

 
The concept of Conservative Ensemble, 

developed by J. Maier [1,2], leads to write down 
transport equation without a source term. The 
idea is to virtually set the defects into two 
groups, the group of oxygen related defects and 
the group of electron related defects. Doing so, 
the source terms is changed in a coupling term 
between the electrical fluxes and the ionic fluxes. 
These expressions fit into the framework of the 
thermodynamic of irreversible process. 
Furthermore, this formalism reduces the 
transport problem of the three particles in only 
one diffusion equation, introducing the chemical 
diffusion coefficient Dδ, which is not constant 
with defects concentration.  

The notations used in this paper are defined 
in the appendix. 
 
2. Master equation for zirconia oxidation 

 
2.1 Theoretical background 

 

Conservative ensemble 

 

Two ensembles are defined (Figure 2), one 
for the oxygen related defects and another one 
for the electrons related defects [3].  
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Figure 2. Maier’s Conservative ensemble [1]. The 
vacancy   

  leads to the cross effect between 
ensembles fluxes. 

 
Each ensemble is conservative because the 

chemical reaction (equation 1, involving electron 
trapping by positive charged oxygen vacancies) 
does not change their concentration. This means 
that there is no source term for the transport 
equation of these ensembles. 
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Each conservative ensemble characteristic 

can be written from defects one. For the oxygen 
related ensemble we have: 
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Equations 2 reflect the stoichiometry of 
oxide, concentration and fluxes of oxygen 
vacancies are constrained by these equations. For 
the electron related ensemble, we have: 
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Assuming the chemical reaction (equation 1) 
at equilibrium, the equality in chemical potential 
can be written as: 
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From the thermodynamics of irreversible 
processes, we have the flux of each defect: 

i i iJ s             (5) 

And then using the relation between 
chemical potential (equations 4) we finally write 
relations for ensemble fluxes: 
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With the following relations: 
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Oxygen transport 

 
From equation 6 we can determine oxygen 

transport in zirconia using Wagner theory [4]. 
We assume electroneutrality in the oxide: 

2 0O eJ J            (8) 

From this relation one can write the total 
oxygen flux in the so called ambipolar form: 
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 Doing so, we define the ambipolar 
conductivity: 
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Where each term is defined as: 
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We now define the chemical transport 
coefficient which leads to the global transport 
equation: 
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It highlights the ambipolar conductivity and 
the chemical capacitance effects. These terms 
contains all transport and chemical information. 
Their analytical forms are deduced from 
constraints applied on defects, as the 
electroneutrality, the stoichiometry and the 
chemical reaction. Finally we can write the 
global transport equation: 
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The oxide thickness growth is determined 
from the oxygen flux defined at Metal/Oxide 
interface:  
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2.2 Application for zirconium oxidation 

 
Chemical reaction constant 

 

Noting K the constant of the chemical 
reaction (equation 1), it has the form: 
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With NC = 2.8 1022 cm-3, and E an energy 
term for which we will make parametrical study. 
The tests are done on two extreme cases. One for 
which   

   vacancies are fully ionized, the other 
for which vacancies   

   have trapped the 
electrons. 
 
Analytical form of the chemical diffusion 

coefficient 

 
We first split the chemical capacity into an 

ionic term and an electronic one [5]: 
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Using the following relations and assuming 
ideal solution we can find analytical form of the 
differential terms in equation 16. 
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The chemical diffusion coefficient takes the 
form: 
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Each term implied in this expression depends 
on the defects concentration, on the diffusions 
coefficients and on the chemical reaction 
constant. 

 
Master equations 

 

We write the transport equation (equation 15) 
as a function of the electron concentration ce’: 
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with A given by:    
        , i.e. :
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The equation 19 is implemented in 
COMSOL Multiphysics using the PDE form in 
one dimension. The term eox stands for the oxide 
thickness. It appears in the transport equation 
(equation 19) because this equation is written in 
reduced coordinates for which we have: 
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Doing this leads us to have a constant 
geometry for the subdomain. The oxide 
thickness eox is solved from equation 14 
implemented as weak form boundary term on the 
internal interface.  
 

Boundaries conditions 

 

As illustrated in the Figure 3, we impose 
oxygen concentration at interfaces by fixing the 
oxygen nonstoichiometry δ. 
 

 
 

Figure 3. Oxygen concentration is fixed at 
metal/oxide interface and at oxide surface. 
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The electrons concentrations at boundaries 
are then deduced from δ and from the following 
relations: 
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By mean of some algebra: 
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Note that the initial oxide thickness is set to 
10 nm. 
 

4. Results of the simulation 

 
We study effect of several parameters 

implied in the oxidation model. Chemical 
diffusion and oxide growth evolution are 
deduced from the simulations. 
 
4.1 Comparison with experiment 

 

In the Figure 4 we compare oxide growth 
evolution from the model with experimental 
results taken from literature [7]. The oxygen 
vacancy diffusion coefficient evolution with 
temperature is taken from Debuigne [6] analysis, 
at 360°C the value is set to 8.10-18 m2.s-1. 

Simulation gives thickness in agreement with 
the experimental data. Furthermore the oxidation 
of zirconium at 288°C actually gives an oxide 
thickness around one micron for 350 days, which 
is the magnitude given by the simulation. 
 

 
 

Figure 4. Comparison of the simulation results with 
data taken from literature [7]. Simulation gives oxide 
thickness in agreement with the experimental data. 

4.2 Effect of electrons trapping 

 

By changing the value of the chemical 
constant K we change the dominant vacancy 
defect. Decreasing this value makes vacancies to 
trap electrons. The effect of electron trapping is 
showed on the Figure 5 and Figure 6.  

 
Figure 5. The chemical diffusion coefficient Dδ is not 
constant through the oxide. Electrons trapping 
decreases the chemical diffusion coefficient. 
 

First, we can see that the chemical diffusion 
coefficient is not constant in the oxide, then that 
it decreases with electron trapping. This fact is 
consistent with J. Maier theory [8]. We then plot 
the oxide thickness as a function of electron 
trapping. 
 

 
Figure 6. Electrons trapping effect on oxide growth.  
 

Trapping electrons makes oxides loose 18 % 
of its thickness, which is not very significant. We 
next see this effect when vacancies diffusions 
coefficients are not the same for both charged 
defects. 
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4.3 Effect of vacancies transport coefficient  

 

When vacancies trap electrons, their 
diffusion coefficient can likely be modified. We 
now study this fact by parametrical studies on 
vacancies diffusion coefficient ratio. Results are 
plotted on Figure 7.  

 
a) 

 
b) 

 
 

Figure 7. Effects of vacancies diffusion coefficient on 
oxide growth. Vacancies can have their diffusion 
coefficient modified by electrons trapping. 
 

The results show that electrons trapping as 
well as vacancies diffusion coefficient have 
significant effects on oxidation growth kinetics. 
Transport coefficients still have more impact 
than the bulk chemical reaction. Here we need 
more insights on defects transport coefficients to 
know what effect electrons trapping can have on 
it. 
 
 
 
 

4.4 Effect of electrons diffusion coefficient 

 

According to Wagner theory, oxygen 
diffusion assuming electroneutrality has an 
ambipolar form. In this context, the transport is 
limited by the lowest defect conductivity. We 
can check this point by changing electrons 
diffusion coefficient. Results are showed in 
Figure 8. 

 
a) 

 
b) 

 
 
Figure 8. Effects of electrons diffusion coefficient on 
oxide growth. According to ambipolar transport the 
kinetics is limited by the lowest defect conductivity. 
 

Increasing electrons transport coefficient has 
not so much effect on oxidation kinetics. 
However, it must be noted that this oxidation 
model works without polarization effect. 
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4.5 Effect of nonstoichiometry 

 
We now study the effect of nonstoichiometry 

at internal interface. We know that for zirconia, 
external interface is very close to stoichiometry. 
Changing this value, keeping close to 
stoichiometry, is not significant for oxidation 
kinetic. However, we don’t know the exact value 
of nonstoichiometry at internal interface. Figure 
9 shows parametrical study on this value. 

 
 
Figure 9. Effect of internal nonstoichiometry. This 
value is related to the oxygen chemical potential at 
this interface. Increasing it increases the oxygen 
chemical potential gradient across the oxide.  
 

Internal nonstoichiometry has an important 
effect on oxide growth. It corresponds to the 
chemical potential gradient across the oxide. The 
highest it is, the fastest the oxide growth. 
 
5. Concluding remarks 
 

The model developed in this paper leads us 
to study zirconium oxidation from the transport 
of oxygen vacancies and electrons through 
zirconia and the bulk chemical reaction between 
these defects. 

The model keys factors are the defects 
diffusions coefficients, the oxygen chemical 
potential gradient and the chemical reaction 
constant. All these parameters can be studied by 
this model. Magnitude of the oxide thickness 
deduced from the simulations is coherent with 
experimental data for zirconium oxidation. 
However, it is important to note that the model is 
not limited to study transport in zirconia. It can 
be used to study transport in all kind of materials 
which have an anionic transport behavior.  

Finally, this model can be written is two 
dimension, using ALE moving mesh for the 
Metal/Oxide interface displacement. The two 
dimensions model enables to work on second 
phase particles on oxide. It just needs more 
insights on boundaries conditions between the 
inclusion and the matrix. 
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7. Appendix 
 

  
  Oxygen ensemble concentration 

  
  Electron ensemble concentration 

  
  Oxygen ensemble flux 

  
  Electron ensemble flux 

  
  Zirconia perfect stoichiometry 

   Concentration of defect i 
   Flux of defect i 
  

  Oxygen ensemble electrochemical potential 
  

  Electron ensemble electrochemical potential 
   Electrochemical potential of defect i 
   Transport coefficient of defect i 
   Oxygen chemical potential 
   Chemical potential of defect i 
   Valence of defect i 
   Diffusion coefficient of defect i 
NC Number of states in the conduction band  
  Zirconia nonstoichiometry 
q Elementary charge 
k Boltzmann constant 
T Temperature 
R Gas constant 
 




