

TEC Tecnológico de Costa Rica

"A 2D Computational Model of an Active Magnetocaloric Regenerator with Parallel Plates"

F. Rodríguez M.¹, B. Chinè¹, S. Fabbrici², F. Albertini², D. Negri³, F. Cugini⁴, M.Solzi⁴

¹School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica ²Institute of Materials for Electronics and Magnetism, National Research Council, Parma, Italy ³Independent Researcher, Fidenza, Italy ⁴Department of Mathematical, Physical and Computer Sciences, University of Parma, Italy

Agenda

1. Introduction

Background and objective

2. Solution with COMSOL Multiphysics®

- Governing Equations
- MCE inclusion
- AMR modeling
- 3. Results and discusión
 - Magnetocaloric materials assessment
 - MCMs evaluation of performance
- 4. Conclusions

Introduction

Modern cooling devices

Based on vapor compression technology

High greenhouse effect potential Low energy efficiency

Environmental-friendly alternative

Magnetic Refrigeration

Zero ozone depletion and global warming potential High efficiency and low energy consumption

Based on the magnetocaloric effect (MCE)

Introduction

This work aims to study the performance of three different MCMs – Ni49.6Mn34.2In16.1, and Ni50Mn35In15 Heusler compounds, and Gd – in an AMR with parallel plates using a robust computational model developed in COMSOL Multiphysics[®]

Solution with COMSOL Multiphysics[®]. Governing Equations

Navier-Stokes momentum and continuity equations for incompressible fluids

$$\rho_f \left(\frac{\partial U}{\partial t} + (U \cdot \nabla) U \right) - \mu_f \nabla^2 U + \nabla p = 0$$
$$\nabla \cdot U = 0$$

Energy-balance relations for heat transfer in solids and fluids

$$\rho_{s}c_{p,s}\frac{\partial T_{s}}{\partial t} - k_{s}\nabla^{2}T_{s} = \dot{Q}_{MCE} + \dot{Q}_{HT}$$
$$\rho_{f}c_{p,f}\left(\frac{\partial T_{f}}{\partial t} + (U \cdot \nabla)T_{f}\right) - k_{f}\nabla^{2}T_{f} = -\dot{Q}_{HT}$$

Solution with COMSOL Multiphysics[®]. MCE inclusion

Magnetocaloric effect added as a heat source in the energy-balance equation

 $\rho_s c_p(H,T) \frac{\Delta T_{ad}(H,T)}{dt} = \dot{Q}_{MCE}$

Solution with COMSOL Multiphysics[®]. AMR modeling

Magnetic Device geometry and boundary conditions

$$\left(k_f \frac{\partial T_f}{\partial y}\right)\Big|_{y=H_{fl}} = \left(k_s \frac{\partial T_s}{\partial y}\right)\Big|_{y=H_{fl}}$$

Initial Conditions and working parameters

Parameter	Value
Magnetic field strength	1.8T
Total cycle period	2s
Fluid flows step time	1s
(de)magnetization step time	1s
Fluid velocity	0.024 m/s
Heat flux CHEX (h _c)	0 W/(m ² .K)
Heat flux HHEX (h _H)	10E3 W/(m ² .K)
Ni _{49.6} Mn _{34.2} In _{16.1} initial temperature	298K
Ni ₅₀ Mn ₃₅ In ₁₅ initial temperature	316K
Gd initial temperature	292K

Results and discussion

Results and discussion

Temperature gradient across the AMR during (a) hot blow (b) cold blow

Velocity profile along the cooling device

Results and discussion

Performance metrics for all MCMs

Parameter	Value	
Ni _{49.6} Mn _{34.2} In _{16.1}		
Temperature span	4.5K	
Cooling capacity	151.05W	
Coefficient of performance	-1.05	
Ni ₅₀ Mn ₃₅ In ₁₅		
Temperature span	14.89K	
Cooling capacity	847.81W	
Coefficient of performance	1.80	
Gadolinium		
Temperature span	17.25K	
Cooling capacity	974.78W	
Coefficient of performance	0.79	

Temperature span $\Delta T_{span} = T_{HHEX} - T_{CHEX}$

Cooling capacity

$$q_c' = \int_0^\tau \int_0^{L_{HEX}} q_c'' \, dx dt$$

Coefficient of performance (COP)

$$COP = -\frac{q_c'}{w_{tot}'}$$

$$w'_{tot} = q'_r + q'_c + \frac{U_f \nabla p}{\eta_{pump}}$$

Conclusions

- The performance of three magnetocaloric materials has been evaluated in terms of temperature span, cooling capacity and coefficient of performance using a robust AMR 2D-model with parallel plates.
- The Gd performs better than the other two Heusler compounds but followed closely by Ni₅₀Mn₃₅In₁₅, while the Ni_{49.6}Mn_{34.2}In_{16.1} has undesirable behavior also displaying the lowest values for the metrics mentioned.
- Ni₅₀Mn₃₅In₁₅ Heusler compound is viable option with great cost effectiveness, but for cooling applications working above room temperature – around 316K.
- The computational results obtained with Comsol Multiphysics[®] are encouraging for future studies where certain parameters of the model can be varied to optimize the response of the MCMs and the cooling device.

The authors gratefully acknowledge:

Vicerrectoría de Investigación y Extensión of the Instituto Tecnológico de Costa Rica, through the project 5402-1351-2301.

References

- [1] D. Coulomb, J. L. Dupont and A. Pichard, "The Role of Refrigeration in the Global Economy," 29th Informatory Note on Refrigeration Technologies, Technical Report, International Institute of Refrigeration, Paris, France, 2015.
- [2] C. Aprea, A. Greco, A. Maiorino and C. Masselli, "Analyzing the energetic performances of AMR regenerator working with different magnetocaloric materials: Investigations and viewpoints," *International Journal of Heat and Technology*, vol. 35, no. 1, pp. S383-S390, 2017.
- [3] International Energy Agency, "The Future of Cooling," 2018. [Online]. Available: http://www.iea.org/reports/the-future-of-cooling. [Accessed July 2023].
- [4] D. Coulomb, J.-L. Dupont and V. Morlet, "The Impact of the Refrigeration Sector on Climate Change," 35th Informatory Note on Refrigeration Technologies, Technical Report, International Institute of Refrigeration, Paris, France, 2016.
- [5] Y. Hwang, "Harmonization of the Life Cycle Climate Performance Methodology," 32nd Informatory Note on Refrigeration Technologies, International Institute of Refrigeration, Paris, France, 2016.
- [6] A. Kitanovski, U. Plaznik, U. Tomc and A. Poredos, "Present and future caloric refrigeration and heatpump technologies," *International Journal of Refrigeration*, vol. 57, pp. 288-298, 2015.
- [7] E. Brück, O. Tegus, O. Tegus, D. Thanh and K. Buschow, "Magnetocaloric refrigeration near room temperature," *Journal of Magnetism and Magnetic Materials*, vol. 310, no. 2, pp. 2793-2799, 2007.
- [8] D. Velázquez, C. Estepa, E. Palacios and R. Burriel, "A comprehensive study of a versatile magnetic refrigeration demostrator," *International Journal or Refrigeration*, vol. 63, pp. 14-24, 2016.
- [9] S. Choi, U. Han, H. Cho and H. Lee, "Review: Recent advances in household refrigerator cycle technologies," *Applied Thermal Engineering*, no. 132, pp. 560-574, 2018.
- [10] V. K. Pecharsky and K. A. G. Jr, "Magnetocaloric effect and magnetic refrigeration," *Journal of Magnetism and Magnetic Materials*, vol. 1, no. 3, pp. 44-56, 1999.
- [11] A. Tishin and Y. Spichkin, The Magnetocaloric Effect and its Applications, Boca Raton: CRC Press, 2003.

