

Bubble detachment from the surface of a (photo)electrode

*Feng Liang*¹, Roel van de Krol^{1, 2}, Fatwa F. Abdi³

¹Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany

² Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Berlin 10623, Germany

³ School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China

feng.liang@helmholtz-berlin.de

2023 Oct. 25th

Computational Fluid Dynamics II

Photoelectrochemical water splitting

Schematic illustration of the (photo)electrochemical water splitting device

- Photoelectrochemical (PEC) water splitting can produce truly green hydrogen
- Bubbles in PEC devices play a crutial role in affecting energy conversion efficiency, lots of mechanisms, e.g., bubble detachment, however, remain unclear

Bubble induced drawbacks:

blockage of the electrocatalyst surface,

product crossover, i.e., mixture of $\rm H_2$ and $\rm O_2$

optical loss, etc.

H. Vogt, *et al., Electrochim. Acta*, 235 (2017), 495 K. Obata, *et al., Cell Reports Physic. Sci.*, 2021, 100358 I. Holmes-Gentle, *et al., J. phys. Chem. C*, 123 (2019), 17

2

Closer look at the bubble on (photo)electrode

Schematic illustration of the (photo)electrochemical water splitting device

Model description

Liquid flow:

Navier-Stokes equation

BCs: top (pressure outlet), bottom (wetted wall), right (no slip wall)

Bubble/electrolyte interface:

Level-set

BCs: top (no flow), bottom (wetted wall), right (no flow)

Convection of dissolved oxygen:

Transport equation

BCs: top (free outlet), bottom (no flux), right (no flux) Note: diffusive mass transfer is ignored due to the Péclet number (Pe) is in the order of magnitude of 10^4 ; mass transfer through the interface is not included due to short simulation time (5 ms)

Mesh independence check

Compromise between model accuracy and computation time

Model validation

0s (___), 5×10^{-4} s(___), 1×10^{-3} s(___), 1.5×10^{-3} s(___) and 2×10^{-3} s(___)

Small differences attributed to slight variation of the material properties; however, the simulated bubble interface from our model agrees well with the literature results

Dependence of γ on dissolved O₂ concentration

S Jain, et al, AIP Adv., 7 (2017), 045001

Surface tension coeff. is significantly affected by the concentration of dissolved oxygen

COMSOL CONFERENCE MUNICH / 25.10.2023

Snapshots of the bubble/electrolyte interface

Super-saturated boundary layer of the dissolved oxygen facilitates bubble detachment

- Surface tension gradient induces the Marangoni convection, which leads to a downward (against the bubble departure trajectory) Marangoni force on bubble, F_{Mc}
- F_{Mc} is not the determining force during bubble departure

Surface tension force in z direction, F_{sz}

• Bubble coverage on the (photo)electrode follows the same trend as F_{sz}

• Surface tension gradient due to the concentration difference of dissolved oxygen causes dramatic morphological changes at the bubble/electrolyte interface, thus decreases the bubble coverage on (photo)electrode, which is the determining factor in bubble detachment

Summary

We developed a simple model to describe how the super-saturated boundary layer of dissolved oxygen affects bubble detachment

- Surface tension coefficient is significantly affected by the concentration of dissolved oxygen
- Super-saturated boundary layer of dissolved gas facilitates bubble detachment
- Surface tension gradient induces the Marangoni convection, thus leads to a downward (against the bubble departure trajectory) Marangoni force, F_{Me} , which is, however, not the determining factor
- Surface tension force in z direction, F_{SZ} , is the dominant force which prevents bubble departure

Acknowledgements

www.helmholtz-berlin.de

HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

Special thanks to:

Prof. Pavlina Basarova and Jakub Crha (University of Chemistry and Technology, Prague)

Dr. Annette Pahl (Comsol Multiphysics)