Polarizability of a Spherical Particle in an Anisotropic Media

As a part of our primary research, we explore the phenomenon of non-radiative resonance energy transfer (RET) between a pair of dipoles positioned within a hyperbolic metamaterial (HMM). Our investigation reveals that the presence of an HMM can fundamentally alter these non-radiative dipole-dipole interactions, leading to strong coupling between the dipoles. Due to the anisotropic nature of HMM, it is crucial to obtain the correct expression for the polarizability of a finite sized particle placed within such a medium.

G. Bansode, K. Sasihithlu

Indian Institute of Technology Bombay, Powai, India

Introduction

A Sihvola showed that polarizability of a spherical particle in an anisotropic medium cannot be analytically determined without accounting for the depolarization effect caused by the ellipsoidal shape (see fig.2&3). In our study, we aim to demonstrate, through rigorous numerical simulations, that the effective medium approximation proposed by Sihvola provides a satisfactory estimation for this problem. To analyze this, we consider a gold (Au) nanosphere with a radius of 10 nm as a

dipole emitter placed in an arbitrary anisotropic medium. By comparing the effective permittivity extracted from the simulations with analytically obtained results, we can assess the accuracy of the approximation.

Extraction of effective permittivity of particle in a homogenous medium

Transformation of problem for isotropic spherical particle in an uniaxial anisotropic media

Results

The generalization of the Maxwell Garnett rule to the spherical isotropic mixtures in anisotropic follows:

$$\epsilon_{eff,z} = \epsilon_z + 3f(\epsilon_{Au} - \epsilon_z) \frac{\epsilon_z}{\epsilon_{Au} + 2\epsilon_z - f(\epsilon_{Au} - \epsilon_z)}$$

The generalization of the Maxwell Garnett rule to the spherical isotropic mixtures in anisotropic when ellipsoidal depolarization is considered follows:

$$\epsilon_{eff,z} = \epsilon_z + f \left(\epsilon_{Au} - \epsilon_z \right) \frac{\epsilon_z}{\epsilon_z + (1 - f) \cdot N_z (\epsilon_{Au} - \epsilon_z)}$$

Effective permittivity component comparison for negative uniaxial anisotropic media

REFERENCES

1. Karthik Sasihithlu. "A coupled harmonic oscillator model to describe the near-field radiativeheat transfer between nanoparticles and planar surfaces". In: arXiv preprint arXiv:1810.02548 (2018). 2. Sihvola, Ari H. "On the dielectric problem of isotrophic sphere in anisotropic medium." Electromagnetics 17, no. 1 (1997): 69-74. 3. Smith, D. R., D. C. Vier, Th Koschny, and C. M. Soukoulis. "Electromagnetic parameter retrieval from

inhomogeneous metamaterials." Physical review E 71, no. 3 (2005): 036617

Excerpt from the Proceedings of the COMSOL Conference 2023 Munich