3D, Two Phase Multispecies Transport Model of PEM Fuel Cells

COMSOL Conference November 30-December 01, Bengaluru

Image courtesy: TechCrunch

Celebrating

Image courtesy: COMSOL Multiphysics

1. Introduction

- Research in Hydrogen fuel cell
- Fundamentals of PEMFC
- System configuration

2. Research

- Visualization of liquid water content in PEMFC
- Flow-fields for open cathode fuel cell
- Modeling and simulation Results
- Experimental results

Introduction: Research In Hydrogen Fuel Cell

Water Management

Water, Where is it coming from?Formed water at cathode keep the <u>electrolyte</u> at the correct <u>level of hydration</u>. Supplied air over the cathode would also dry out any excess water.

Solution-

- <u>Humidifying</u> the air/hydrogen or both
- **Designing of Flow field** for the PEMFC.
- Proper <u>optimization of parameters</u> like-Air flow rate, humidity level (Relative humidity), Temperature, Stoichiometry (λ), pressure.

Different methods likewick with GDL, directly injecting water, utilizing the o/l water to humidify l/L air, and <u>self</u> <u>humidification</u>.

Catalyst & Membrane Design

- Slow reaction rate leads to low current and voltage.
- <u>Novel catalyst architectures</u> (such as nanocages, core-shell, nanoframes, nanowires, nanocrystals) can increase the activity of the catalyst.
- Nowadays, <u>nitrogen-doped carbon supports</u> ensure uniform coverage of the ionomer, owing to the Coulombic attraction between the ionomer and N groups on the carbon support.
- Catalyst designing can **increase the performance** of fuel cells by <u>40%</u>.

Pt/N-doped carbon supports

COMSOL Conference 2023

BOP & System Configuration

- <u>Design</u> related to <u>Gas Flow</u>- for hydrogen and oxygen.
- <u>Humidification</u> system designing-Bubbling, Direct water or steam injection method, Enthalpy wheel method, Membrane humidification method.
- <u>Air Compresso</u>r-for improving the air pressure of the fuel cell.
- <u>Air recycle/bypass design</u>- the outlet air having heat can be used to warm up fuel cell system during cold-startup process.
- Fuel Cell cooling system

Reference: K. Jiao et al. "Designing the next generation of proton-exchange membrane fuel cells." Nature 595 (2021), 361-369.

Fundamental of PEM Fuel Cell

Reactions:

HOR at Anode: $H_2 \rightarrow 2H^+ + 2e^-$

ORR at Cathode:
$$\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$$

Overall: $H_2 + \frac{1}{2}O_2 \rightarrow H_2O + Heat + Electrical energy$

Reference: H. Wu, Mathematical Modeling of Transient Transport Phenomena in PEM Fuel Cells, (Ph.D. thesis), University of Waterloo, 2009.

Schematics Representation of four cells PEMFC stack

Function & Transport Phenomena

Bipolar Plate

- Guiding gas reactant flow ⊳
- Provide structural support for stack assembling ≻
- Electron transport >
- Liquid water transport
- Heat transfer ≻

Gas diffusion layer (GDL)

- Gas reactant porous media flow ≻
- Water evaporation and condensation ≻
- Liquid water porous media flow Þ
- Electron transport Þ
- Heat transfer ⊳

Catalyst layer

- Electrochemical reactions \checkmark
- Gas reactant porous media flow ⊳
- Water evaporation and condensation ≻
- Liquid water porous media flow ≻
- Membrane (dissolved) water transport Þ
- Membrane water sorption/desorption ≻
- Electron/proton transport Þ
- Heat transfer ~

Membrane

- Repelling electrons ≻
- Impermeable barrier to gas reactants Þ
- Membrane (dissolved) water transport
- Proton transport Þ
- Heat transfer ⊳

System Configuration for PEMFC and OC-PEMFC

Cooling fan Pressure Air Η, Hydrogen tank Humidifier Motor valve Humidifier - Air in Compressor Air out 🔸 H₂ out Condenser Control Purge Fuel cell stack valve valve Pump Water reservoir

Polymer electrolyte membrane fuel cell

Open cathode polymer electrolyte membrane fuel cell

PEM Fuel Cell Stack to System level development

Visualization of liquid water content in PEMFC

- Transport of water, condensation and evaporation phenomenon in anode and cathode domains are solved using temperature dependent vapor pressure.
- The reactant gases enters the flow channels in laminar flow and liquid in dispersed phase, with additional mass transport source from porous gas diffusion layer, governed by eqn. 1.

$$m = k (c_{channel} - c_{porous media}) M$$
(1)
- mass transfer rate; c-concentration; and M- molecular wt.

Flow Fields for OC-PEMFC

Pressure Drop

A 23.9

COMSOL Conference 2023

Unpublished work

▲ 71

Oxygen Concentration

▲ 0.177

COMSOL Conference 2023

Unpublished work

I-V Polarization Curve

Figure: I-V polarization curve for varying crosssectional designs obtained via simulation.

Experimental Results at different Airflow Rate

femperature

Figure: (a) I-V curve and temperature plot for boot CSD at different AFR 1.25m³/sec, 2.75m³/sec, and 4.5m³/sec; (b) Histogram plot for peak PD in mW/cm² and corresponding stack temperature in °C for various CSDs at different AFR; and (c) The net system power plot at corresponding OC-PEMFC stack peak power density for different CSDs at AFR 2.75m³/sec. CD-Current density, T-temperature, and P-Peak power density.

Experimental Results at different Blower Power

Figure: (a) I-V curve and temperature plot for boot CSD at different blower power of 3V, 5V, and 10V; (b) Histogram plot for peak PD in mW/cm² and corresponding stack temperature in °C for various CSDs at different blower power; and (c) The net system power plot at corresponding OC-PEMFC stack peak power density for different CSDs at 5V BP rating. CD-Current density, T-temperature, and P- peak power density.

Electrochemical Impedance Spectroscopy (EIS)

→ 5A → 10A → 15A → 20A → 25A → 30A

Figure: Nyquist diagram obtained from the EIS test for four cells OC-PEMFC stacks at different operating conditions (a) Airflow rate of 1 m³/sec. (b) Blower power rating of 5V.

Unpublished work

Table: Overall analysis of the Cross-Sectional Designs

CS Design	CSA (mm²)	Pressure	Airflow rate		Blower power		Stack temperature		Galvanostatic
		drop (Pa)							
Square	4	13.2	Î	Excessive cooling	1	Excessive cooling			Effective cooling at 5, 7V
Trapezoid	3	26		Improved airflow rate		Improved airflow rate			Ineffective cooling
Dome 📃	3.57	15.9	1	Excessive cooling; water removal	1 →	Complex balance of performance and temp	1		Effective cooling at 7, 10 V
Boot	3	23.9		Water removal	1	Water removal		Excessive drying	Ineffective cooling
Pentagon 📃	2.5	45.7		Minimal effect		Excessive water removal		Excessive drying	Ineffective cooling
Triangular 📥	2	71	1	No effect		Drying	1	Low dying; compensated by enhanced performance	Ineffective cooling

COMSOL Conference 2023

Unpublished work

- Director CSIR-CECRI, Dr. K. Ramesha.
- Supervisor- Dr. A.K. Sahu (Principal Scientist) and Mentor- Dr. Harshal Agarwal (Senior Scientist) for constant support and guidance.
- CSIR-HRDG and AcSIR for GATE-SRF (GATE31/0068(15842)/2022-EMR-I).
- Organizing committee and team members COMSOL Multiphysics.

वैज्ञानिक और नवीकृत अनुसंधान अकादमी ACADEMY OF SCIENTIFIC AND INNOVATIVE RESEARCH (An Institution of National Importance by an Act of Parliament)

Thank you

Shikhathapa271@gmail.com