

USING A LEVEL-SET MODEL TO ESTIMATE DWELL TIME IN A VACUUM DEWATERING PROCESS FOR PAPER

Kamal Rezk

Department of Energy- Environment- and Building Technology, Karlstad University

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

Outline

- Purpose/Aim
- Dewatering process
- Computational domain
- Governing equations
- Volume forces
- Mesh study
- Results
- Conclusion
- Future work

- To physically understand the mechanisms which determines the dewatering rate during the vacuum process.
- The aim is to estimate dry content as a function of dwell time numerically
- Obtaining better methods of dimensioning industrial equipment

Dewatering process

Computational domain

- 2D structure
- Basis weight 20 g/m^2
- Porosity 0.72
- Aligned fiber orientation
- Constant cross-section area of fiber

Governing equations

Level-Set equation with a re-initialisation term

$$\frac{\partial \varphi}{\partial t} + u_j \frac{\partial \varphi}{\partial x_j} = \gamma \frac{\partial \varphi}{\partial x_j} \left(\varepsilon \frac{\partial \varphi}{\partial x_j} - \varphi (1 - \varphi) \frac{\partial \varphi}{\partial x_j} \left| \frac{\partial \varphi}{\partial x_j} \right|^{-1} \right)$$

Continuity and momentum equation

$$\square \ \frac{\partial u_i}{\partial x_i} = 0$$

$$\square \ \rho \frac{\partial u_i}{\partial t} + \rho u_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \mu \left[\frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] - \rho g_i + F_i + F_{st,i}$$

Volume forces

Mesh study

	Maximum element size [µm]	Minimum element size [µm]	Element growth rate	Resolution of narrow regions
Case S	16.5	7.15	1.15	1
Case 1	12.5	7.15	1.15	1
Case 2	10.0	7.15	1.15	1
Case 3	16.5	3.57	1.15	1
Case 4	16.5	1.43	1.15	1
Case 5	16.5	7.15	1.05	1
Case 6	16.5	7.15	1.025	1
Case 7	16.5	7.15	1.15	3
Case 8	16.5	7.15	1.15	5

Results

Results (con.)

Results (con.)

Results (con.)

Conclusion

- Random fiber positioning has a minor effect on the dwell time during high vacuum levels.
- □ The influence of the forming fabric has a minor effect on the dwell time
- The mesh case study indicates low sensitivity of the models which support their reliability.

Future work

- Analyse fiber structures with a basis weight of 50 g/m² and compare these to experimental data.
- The influence of deformation and fiber displacement should be considered.
 A possible approach could be implementation of an Arbitrary Lagrange-Eulerian (ALE) method.
- Implementation of volume forces in order to analyse isotropic fiber structures in a new LS model

Thank you for listening!

Questions ?

Comparison of different structures

