

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI AGRARIA

Dipartimento di Scienze Agrarie e Ambientali

POST HARVEST COLD CHAIN OPTIMIZATION OF LITTLE FRUITS

COMSOL CONFERENCE EUROPE 2012

SIMONE MARAI <u>simone.marai@unimi.ir</u> ENRICO FERRARI RAFFAELE CIVELLI

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

INTRODUCTION

Blueberry needs to be refrigerated as soon as possible after the harvest, to preserve nutritional and organoleptic properties and extend its shelf life

The refrigeration can start immediately with a passive refrigerator system, called Icepack.

PASSIVE REFRIGERATOR SYSTEM

Passive refrigerator system uses the changing phase of a material to keep temperature close to the melting temperature. Icepack is a polystyrene box with a hermetic plastic bag filled

Iced water keeps temperature near to 273.15K

EXPERIMENTAL METHOD

- Two different kind of experiment:
- empty Icepack in laboratory
- Icepack filled with blueberries on field

TARGET: melting time of ice slab and temperature distribution inside the Icepack

MODELS

A multy-step study was performed: •a 3-D heat transfer model on the empty box;

•a 3-D heat transfer model on the box containing a slab with apparent thermal properties obtained from the air and the fruit;

•a 3-D heat transfer model on the box filled with randomized diameter spheres, simulating the fruits, created with an original MatLab® script and imported in COMSOL Multiphysics®

MATLAB® SCRIPT

- The original script consist in a randomized Gaussian distribution diameter of the fruits (sphere) experimentally determined.
- Each fruit have to touch three points of the geometry to be in equilibrium.
- The sphere that must be positioning will be placed in the point with less absolute potential energy.
- No overlapping between spheres is allowed.

The loop ends when all the spheres have been positioned.

GOVERNING EQUATIONS

Conduction equation

$$\rho \cdot C_p \, \frac{\partial T}{\partial t} = \nabla \big(k \nabla T \big)$$

Boundaries condition

$$-\vec{n}\cdot\left(k\vec{\nabla}T\right) = h\cdot\left(T_{ext}-T\right)$$

Modified specific heat

$$C_{p} = C_{p_{ice}} + H(T) \cdot (C_{p_{W}} - C_{p_{ice}}) + G(T) \cdot lda$$

THERMO-PHYSICS PROPERTIES AND INITIAL VALUES

	blueberr	ies	air		polystyrene	ice	water
ρ - Density (kg/m ³)	990		1.248		25	917	1000
C _p - Specific heat (J/kg K)	3786		1013		1200	2260	4186
k - Thermal conductivity (W/m K)	0.539		0.024		0.033	2.208	0.6
Parameters			Value		Parameters		Value
Blueberries initial temperature		302.25 K			h - Convective heat transfer coefficient		8 W/m ² K
Polystyrene initial temperature		2	295.15 K		T _{ext} - Ambient temperature		300.15 K
Air initial temperature		2	297.15 K		Ice fusion temperature		273.15 K
Ice initial temperature		2	253.15 K		Percentage of blueberries in mixed slab		75 %
lda - Latent heat of fusion		3	33 kJ/kg				

MESH AND SOLUTION TIME

	Empty Icapack	Slab Icepack	Simulated fruits Icepack
Mesh refinement	NORMAL	NORMAL	NORMAL
Number of elements	34568	14398 (a quarter)	87271 (a quarter)
Solution time	About 2 hours	About 5 hours	About 12 hours

RESULTS (1)

Model 1: empty Icepack

RESULTS (2)

Model 2: slab Icepack

Melting time error $e = \frac{\left|t_{exp} - t_{mod}\right| \cdot 100}{t_{exp}} = 8.5\%$ $\underbrace{310}_{300}$ $\underbrace{300}_{290}$

Mean relative error of blueberries temperature

$$em(\%) = \frac{100}{n} \sum_{i=1}^{n} \left(\frac{\left| T_{exp} - T_{mod} \right|}{T_{exp}} \right)_{i} = 1.06\%$$

RESULTS (3)

Model 3: simulated fruit Icepack

Melting time error $e = \frac{\left|t_{exp} - t_{mod}\right| \cdot 100}{t_{exp}} \cong 0\%$

Mean relative error of blueberries temperature

$$em(\%) = \frac{100}{n} \sum_{i=1}^{n} \left(\frac{\left| T_{exp} - T_{mod} \right|}{T_{exp}} \right)_{i} = 0.43\%$$

CONCLUSION

- Future improvement of this models is under way, which will deal with the optimization of the Icepack:
- •TRIP TIME:
- The trip time after the harvest is smaller than 10.6 hours
- reduce the weight of the packaging reducing the ice slab dimensions.

CONCLUSION

Future improvement of this models is under way, which will deal with the optimization of the Icepack:

•STACKABILITY: Stackability of Icepack

Less exposed surface to ambient

Extension of melting time of \underline{ice}

Reduce again the dimension of the ice slab and packaging weight

CONCLUSION

- Future improvement of this models is under way, which will deal with the optimization of the Icepack:
- •Melting temperature: Use others materials then water
- Change the melting temperature and latent heat of fusion

THAT'S ALL FOLKS

Thank you