

Milan Conference 2012

MODELING MICROWAVE CHIRAL MATERIAL BASED ON CRANKS RESONATOR ARRAY USING COMSOL MULTIPHYSICS

J. Muñoz, G.J. Molina and M. Rojo Dpto. Electromagnetismo y Electrónica UNIVERSIDAD DE MURCIA (SPAIN)

OVERVIEW

- Chiral media
 - Electric and magnetic coupling
 - Electromagnetic rotatory dispersion and circular dichroism
 - Negative refractive index (metamaterial), but does not require simultaneously negative permittivity and permeability
 - Only one resonant structure
- Free-wave X-band experimental and simulated characterization of the material
- Use of COMSOL (RF module):
 - Frequency domain
 - Double Floquet Periodic Boundary Conditions
 - Setting up linearly and circularly polarized waves
 - Sampling Electric Field

MODELING A CHIRAL STRUCTURE

(The unit cell)

(The experimental sample)

- Periodical two-dimensional array of four metallic cranks
- Copper metallization 30 μm thick, patterned on a FR4 dielectric board both sides and connected via posts
- S=13.5 mm, h=2.4 mm
- Uniaxial chirality for normal incident TEM wave

BUILDING THE MODEL

MESHING AND SOLVING

- Finer mesh
- Copy mesh: same triangular mesh on periodic boundaries
- Remaining: Free tetrahedral
- Frequency domain
- Parametric solver: 41 frequency points in the range [8-17 GHz]
- Stationary
- DIRECT enabled
- PARDISO
- Time: about 2 h (PC with a 64-bit Microsoft Windows Operating System, with a 3.20 GHz-processor and 30 GB of RAM)

SIMULATION RESULTS: LINEARLY POLARIZED WAVE

• Arrows volume distribution of E-field along propagation direction

• Resonant frequency (f₀=12.04 Ghz, 0.5 GHz bandwidth)

COMPARING WITH EXPERIMENTAL RESULTS

Sampling co- and cross-polar components of the transmitted field:

Good agreement with experimental results except for 1 GHzshift of the resonant frequency

SIMULATION RESULTS: CIRCULARLY POLARIZED WAVE

RESULTS: CIRCULARLY POLARIZED WAVE

RETRIEVING CONSTITUTIVE PARAMETERS

- Requires reflection and transmission coefficients computation → two additional models:
 - All domains set to air \rightarrow incident field reference
 - Short-circuit plate \rightarrow reference plane for reflection
- Retrieval algorithm* $\rightarrow \epsilon_{eff}$, μ_{eff} , n_{eff}

(*) J. Margineda et al. *Electromagnetic Characterization of Chiral Media, in Electromagnetic Waves* Ahmed Kishk (Ed.), ISBN: 980-953-307-527-8, InTech (2012).

RETRIEVING CONSTITUTIVE PARAMETERS

THAN YOU VERY MUCH