Miscible Viscous Fingering: Application in Chromatographic Columns and Aquifers

Satyajit Pramanik, G. L. Kulukuru, and Manoranjan Mishra

Indian Institute of Technology Ropar, Rupnagar – 140001, Punjab, India

Viscous fingering instability

- The viscous fingering instability is a hydrodynamic instability that occurs when a less viscous fluid displaces a more viscous fluid in a porous medium.
- The interface between the two fluids is unstable and develops "fingers" of the more mobile solution that invade the less mobile one.

•

Viscous fingering instability

Rectilinear displacement

Radial displacement

Fingering occurs in both

- immiscible solutions in which case surface tension must be taken into account
- miscible solutions for which dispersion plays a key role

Here we focus on miscible solutions in rectilinear displacements

Nevertheless, two main applications where viscous fingering is important are not appropriate in the semi-infinite domain:

- 1. Chromatographic separation
- 2. Dispersion of pollutants in aquifers

Each of them involve displacement of a <u>fluid sample of finite extent</u> by another carrying fluid.

Chromatography

• A mechanism, used to separate or to analyze the chemical components of a given mixture by passing it through a porous

medium.

• This separates the analyte or solute to be measured from other molecules in the mixture and allows it to be isolated.

Evidence in chromatography

Magnetic resonance imaging

Fernandez et al., Biotechn. Progress, (1996)

A 5ml sample of 40% glycerol is displaced by water through a resin.

The inlet is at the left side.

The flow rate is 5 ml/min.

E.J. Fernandez et al.

Phys. Fluids, 7 (1995) 468

Fig. 6. Photographs of a 500 μl injection of a saturated iodine in pentane solution through the narrow (4.6 mm diameter) frit. Flow rate=1.5 ml/min. (a) t=30 s, (b) t=60 s, (c) t=120 s, and (d) t=210 s.

Visualization by matching of index of refraction Shalliker et al. (1999).

Dispersion of pollutants in aquifers

Figure 4. Schematic of hypothetical solute body with signs of concentration gradients indicated in each quadrant.

Theoretical model (two component)

Model Equations

$$\nabla \cdot \underline{u} = 0,$$

$$\nabla p = -\frac{\mu(c)}{K}\underline{u}, \quad \text{Darcy's law}$$

$$\frac{\partial c}{\partial t} + \underline{u} \cdot \nabla c = D_x \frac{\partial^2 c}{\partial x^2} + D_y \frac{\partial^2 c}{\partial y^2},$$

$$m = m_1 e^{Rc}$$

<u>u</u>: 2D velocity field

K: permeability

p: pressure

c: solute ruling the viscosity of the miscible fluids

 D_x , D_y : axial and transverse dispersion coefficients

Two-Phase Darcy's Law

$$\frac{\partial \varepsilon_{p} \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} = 0, \quad \mathbf{u} = -\frac{\mathbf{k}}{\mu} \cdot \nabla \rho$$

$$\rho = s_{1} \rho_{1} + s_{2} \rho_{2}, \quad \frac{1}{\mu} = s_{1} \frac{\kappa_{r1}}{\mu_{1}} + s_{2} \frac{\kappa_{r2}}{\mu_{2}}, \quad s_{1} + s_{2} = 1$$

$$\frac{\partial \varepsilon_{p} c_{1}}{\partial t} + \nabla \cdot c_{1} \mathbf{u} = \nabla \cdot D_{c} \nabla c_{1}, \quad c_{1} = s_{1} \rho_{1}$$

$$m_{1} = m_{2} = m_{01} e^{Rs_{1}}$$

$$\rho = \rho_1 = \rho_2 = \text{constant}$$

$$\epsilon_{p,} \mathbf{K} = \text{constant}$$

$$\kappa_{+} = \kappa_{-} = -1$$

Initial conditions

$$s_{1}(t=0) = \begin{cases} 0, & x < L_{x}/8 \\ 0.5(1+\zeta f(x,y)), & x = L_{x}/8 \\ 1, & L_{x}/8 < x < L_{x}/8 + W \\ 0.5(1+\zeta f(x,y)), & x = L_{x}/8 + W \\ 0, & x > L_{x}/8 + W \end{cases}$$

$$-n \times ru = 0$$
 No Flux

$$-n \cdot D_c \nabla c_1 = 0$$
 Outflow

$$-n \times \Gamma u = (s_1 \Gamma_1 + s_2 \Gamma_2) U_0$$
, inflow

Normal inflow velocity U₀

Parameters	Symbols	Value & Unit
Length of the	L _x	0.08 mm
domain		0.128 mm
Width of the	Ly	0.02 mm
domain		0.032 mm
Amplitude of the	ζ	0.01
disturbance		
Log-mobility ratio	R	-2, 2, 3
Injection speed	Uo	1 mm/s
		0.5 mm/s
Viscosity of the	μ_1	10 ⁻³ Pa-s
displacing fluid	_	
Aspect ratio	A	4
Length of the finite	$W = L_x/8$	0.01 mm
sample		0.016 mm
	1	l .

Fig. Finer grids

Fig. Extra Fine grids

Fig. Extremely Fine grids (magnified)

No. of elements	Degrees of freedom	Computation time (s)
12684	32249	250
63930	160982	1475
383814	961778	6111

Results

$$R = 2$$
, $A = 4$, $U_0 = 1$ mm/s

$$R = -2$$
, $A = 4$, $U_0 = 1$ mm/s

Results

Results

$$R = 2$$
, $A = 4$, $U_0 = 0.5$ mm/s

$$R = 3$$
, $A = 4$, $U_0 = 0.5$ mm/s

Modeling of Viscous Fingering using COMSOL Multiphysics

Ekkehard Holzbecher "Modeling of Viscous Fingering", Proceedings of the COMSOL Conference 2009 Milan

In version 3.5a:

By coupling:

Poisson and convection-diffusion

The initial state for the concentration distribution is implemented as a MATLAB@ function

$$c(t=0) = \begin{cases} \xi f(x,y) \exp(-x^2/\sigma^2) & \text{for } x < L/128\\ 0 & \text{else} \end{cases}$$

f describes a random disturbance of the initial concentration pattern and $\zeta = 0.01$

Conclusions

- Miscible viscous fingering of finite sample can be modeled using COMSOL Multiphysics.
- The classical VF phenomenon like, merging and tip splitting are observed through this COMSOL Multiphysics simulation model.
- The results and dynamics are reproducible.
- Quantification of the influence of fingering of the broadening of peaks as a function of the various parameters of the problem can be obtained