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Abstract: Piping is a kind of internal erosion 
that occurs under water retaining structures lying 
on a sandy soil. In an attempt to reproduce the 
growth of erosion channels in sand, a small scale 
physical model has been set up in the laboratory 
and a finite element model that reproduces the 
physical model has been developed. This paper 
presents the comparison among modelling 
strategies, from which emerged that  laminar 
flow in the erosion channel can be modelled 
using Darcy’s law and the Fracture Flow 
interface. A first use of the numerical model is 
also presented, concerning the optimization of 
the size of the small-scale set-up.  
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1. Introduction 
 

The structural integrity of water retaining 
structures as river dikes, sea dikes and dams is 
threatened by internal erosion: the removal of 
soil particles due to high seepage forces. Several 
terms have been used in the literature to classify 
the principal mechanisms of internal erosion, 
generating sometimes little confusion. In this 
paper the word ‘piping’ refers to the 
development of erosion channels (pipes) in a 
sandy soil laying underneath a water retaining 
structure with an impervious (clayey or concrete) 
base (Figure 1).  

The erosion process starts at the downstream 
side of the structure where the flow lines 
converge. 

 
 
Figure 1. Pipe development under an impervious 
water retaining structure. 
 

The pipes are initially very small and have 
cross-sections shaped as elongated rectangles, 
with a thickness of a few millimeters and a width 
of a few centimeters. They subsequently develop 
backwards and when they reach the upstream 
side they enormously widen and the structure can  
collapse quickly [1].  

Despite not many cases of piping-induced 
collapse have been documented, due to the 
difficulty in recognizing clearly the traces of the 
mechanism before and even after the collapse 
occurred, piping is nowadays considered a big 
threat for dikes and dams [2, 3]. 

In the last decades, sand box models have 
been set up in an attempt to reproduce the growth 
of erosion channels in sand and to improve the 
existing rules for the prediction of piping [4]. 
Sand box models consist of a rigid box filled 
with sand, a fluid supply system and measuring 
devices. Usually the box is made of a transparent 
material to follow the movement of the particles 
at the walls. 

Research is also focusing on the design of 
monitoring systems capable of detecting the 
occurrence of piping at an early stage. 
Traditionally, pore pressures are measured, while 
monitoring systems under study are based on the 
measurement of temperature [5], electrical 
potential and acoustic emissions [6]. 

A sand box model has been be set up by the 
authors, aimed at testing a monitoring system 
based on temperature measurements. COMSOL 
has been chosen as a modelling tool to 
investigate issues related to the design of the 
facility and to analyze, subsequently, the results 
of the tests, as it allows effective coupling of 
groundwater flow and heat transfer in three 
dimensional geometries.  

Theoretical and numerical modelling of 
piping so far has been mainly two-dimensional 
[7, 8]. However the three-dimensional nature of 
the erosion process has been recently highlighted 
and is being studied [9]. 3D modelling is also 
important when investigating the effect of an 
erosion channel on the physical quantities that 
can be measured in its surroundings. This is a 



 

key point in the design of a monitoring system. 
In this work only the hydraulic modelling of 

the problem is addressed.  
 
2. Governing equations 

 
Fluid flow in porous media is typically 

modelled using Darcy’s law  
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In the above formulas u is a vector 
describing the rate of flow through a surface 
element of unit area, also named Darcy velocity 
or specific discharge, κ is the permeability of the 
porous mass, μ	is the fluid viscosity, ݌ is the 
pore pressure, ߩ is the fluid density, ݃ is the 
acceleration of gravity, ݖ is the elevation head, ܪ  
is the hydraulic head and ׏ denotes the gradient 
operator. 

Flow in piping channels is described by 
Navier-Stokes equations and has been 
traditionally considered laminar, due to the  
small size of the pipes and the limited velocities 
that can be reached in the pipe under the 
hydraulic loads applied to small and medium 
water retaining structures. When the inertial term 
can be neglected, Navier-Stokes equations take 
the name of Stokes equations and can be written 
in the following simplified form: 

݌׏ ൌ ܝ∆ߤ ൅ ۴ (2) 

where F is a vector that accounts for gravity 
and/or other volume forces. 

Eq. (1) and (2) are solved in combination 
with the continuity equation: 

׏  ∙ ሺߩ ሻܝ ൌ 0 (3) 

The inherent order difference between 
Darcy’s law and Navier-Stokes equations 
generates a difficulty at the interface between the 
porous medium and the pipe. Darcy’s law is 
indeed of fist-order in spatial derivatives so that 
only one boundary condition can be applied, 
either on the pressure or on the velocity 
component normal to the boundary. If the normal 
velocity is assigned, the other components of the 
velocity have arbitrary values at the wall. To 
overcome this difficulty some authors used an 
empirical relationship that links the interface 
velocity and the interface velocity gradient 

through a ‘slip coefficient’ thus obtaining a ‘slip 
boundary condition’ [10].  

The approach adopted by COMSOL consists 
in using Brinkman equations to describe the flow 
in the porous matrix and Navier-Stokes 
equations in the free space. Brinkman [11] 
modified Eq. (1) by adding a term: 
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Eq. (4) can also be derived from Navier-
Stokes equations through a volume-averaging 
technique [12]. It has the advantage of 
approximating Eq. (1) for low values of ߢ and 
Eq. (2) for high values of ߢ. Being of second-
order in spatial derivatives, Brinkman equations 
allow two boundary conditions to be set at the 
interface with the pipe: not only the continuity of 
the pressure field is guaranteed but also the 
continuity of all the velocity components. 
 
3. Modelling strategies 
 

The hydraulic module will be combined in 
the future with the thermal module in a transient 
analysis. It is therefore paramount to keep the 
computational cost related to the hydraulic part 
as low as possible. 3D finite element 
discretization of Navier-Stokes and Brinkman 
equations requires to solve four degrees of 
freedom (DOF) for each node, making the 
computation very expensive. Moreover, solution 
of Navier-Stokes equations in the pipe requires 
to adopt, along the pipe walls, a mesh with dense 
element distribution in the normal direction  
(boundary layer mesh), thus increasing the 
overall number of elements. However, what 
plays a major role in the number of elements 
required for the discretization of the pipe is its 
high aspect ratio, with its cross-area much 
smaller than its length. 
 
3.1 Reduction of the degrees of freedom 
 

Many authors (see [7],[8] and [13]) modelled 
the flow in the pipe as a Hagen–Poiseuille flow, 
that is one-dimensional laminar flow through a 
tube. This approach is correct if the following  
assumptions hold: 
- the component of the velocity perpendicular 

to the walls of the pipe is null; 
- the components of the velocity parallel to the 

walls vanish on the walls (no-slip condition). 



 

Studying the flow at the interface between 
free fluid and a porous matrix, Levy and 
Sanchez-Palencia [14] (in [10]) found that the 
velocity in the free fluid is much larger than the 
Darcy velocity in the porous matrix and, as a 
first approximation, the flow around the porous 
medium is the same as if the body were 
impervious. A more detailed investigation in the 
vicinity of the interface revealed the existence of 
an intermediate layer of thickness equal to the 
characteristic length of the matrix pores, which 
allows the asymptotic matching of the free fluid 
with the flow in the porous body. The 
assumptions therefore involve a negligible 
approximation. 

Hagen–Poiseuille flow in tubes of general 
shape is described by the following equation: 
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where ܷ is the average velocity across the 
section, ܮ is the length of the tube, ߚ is a friction 
factor depending on the shape of the section (see 
Table 1) and ܦ௛ is named hydraulic diameter and 
is a ratio between the area of the section and its 
wetted perimeter (ܦ௛ ൌ  .ሻܲ/ܣ4

By comparing eq.(5) with eq. (1) it’s clear 
that Hagen–Poiseuille flow can be described by 
Darcy’s law if a fictitious permeability is used: 

∗ߢ  ൌ
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ߚ
 (6) 

When the cross section of the tube is elongated, 
with the thickness much smaller than the width 
(ܽ/ܾ → ∞) as for the pipes observed in lab tests, 
we obtain 

∗ߢ  ൌ
ܾଶ

12
 (7) 

 
Table 1. Friction factor for different tube geometries. 

Tube geometry a/b ࢼ 

Circle - 64.00 

Rectangle 
 

1 
2 
3 
4 
6 
8 
∞ 

56.92 
62.20 
68.36 
72.92 
78.80 
82.32 
96.00 

and the flow in the pipe is given by 
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Formula (8) is the well known cubic law that 
describes flow in fractures [15].  

If Hagen–Poiseuille flow is assumed to occur 
in the pipe, Darcy’s law can be solved in the 
whole domain by assigning a fictitious 
permeability in the pipe as given by (6) or (7). In 
Darcy’s law only a single unknown (pressure or 
hydraulic head) is associated to each node and 
the solution of the system of equations is much 
cheaper. 
 
3.2 Reduction of the number of elements 
 

In order to simplify the discretization of 
geometries  with a high aspect ratio COMSOL 
features the Fracture Flow interface. The fracture 
(in this case the piping channel) is represented as 
a 2D (internal or external) boundary rather than a 
3D domain (or a 1D boundary rather than a 2D 
domain, in two-dimensional modelling).      

The following form of Darcy’s law is solved 
in the fracture/pipe: 

௙ܙ  ൌ െ
௙ߢ
ߤ
ܾሺ׏୘݌ ൅  ሻ (9)ݖ୘׏݃ߩ

where,	ܙ௙ is the volume flow rate per unit 
width in the fracture and ׏୘ denotes the gradient 
operator restricted to the fracture tangential 
plane. The fracture permeability ߢ௙ can be 
determined according to eq. (6) or (7). The 
specific discharge is considered constant across 
the depth of the fracture. 

 
4. Physical and numerical model 
 

For the lab experiment a sand sample is 
prepared in a box covered by a transparent plate. 
The sand is held between two vertical filters and 
a hydraulic head difference is applied between 
the inlet and the outlet of the water flow. The 
seepage length ܮ is 0.32 m. The vertical filter at 
the outlet does not fully extend up to the 
covering plate so as to allow the sand grains at 
the interface with the cover to be removed by the 
seepage forces. Figure 2 illustrates the set-up.  



 

 
Figure 2. Set-up of the lab experiment. 
 

The numerical model reproduces a sand 
sample where a pipe is present at the interface 
between the sand and the covering plate. We run 
steady state analyses, fixing in time the moment 
when the pipe, after having formed at the outlet 
and grown backwards, has reached a length ݈ 
equal to half the seepage length. The pipe cross-
section is constant along the length. The 
hydraulic head difference between inlet and 
outlet is imposed on the basis of the critical head 
measured in lab tests by other authors [4]. 
Characteristic parameters are reported in Table 2. 

Both 2D and 3D analyses are performed. In 
the 2D model the pipe is idealized as a slot that 
extends to infinity in the third direction. In the 
3D model (Figure 3 and 4) the pipe is modelled 
as a channel situated at the center of the box. The 
symmetry of the problem allows us to model 
only half the box and half the pipe. 

We compare the modelling approaches 
described in section 2, moving from the most 
accurate but also most expensive to the most 
simplified. Table 3 gives an overview of the 
COMSOL interfaces used. 
 
Table 2. Geometrical parameters and material 
properties. 

Parameter  Value 

Seepage length L 0.32 m 

Pipe length l 0.16 m 

Pipe thickness b 0.0018 m 

Pipe width a 0.010 m 

Matrix porosity n 0.40  

Matrix permeability 1.6 ߢe-11 m2 

Hydraulic load 0.10 ܪ߂ m 
 

 

Table 3. List of COMSOL interfaces used and 
corresponding equations solved. 

COMSOL  
interface 

Equation solved 

Matrix Pipe 

Free and porous 
media (FPM) 

Brinkman 
Navier-
Stokes 

Darcy’s law 
(DL) 

Darcy Darcy 

Darcy’s law + 
Fracture flow 
(DL+FF) 

Darcy 
Darcy (FF 
formulation) 

 
In the model that adopts the Free and porous 

media interface (FPM) a pressure boundary 
condition is defined at the inlet and the outlet of 
the domain, together with the condition of zero 
viscous stress. Along the impermeable walls the 
‘no slip’ condition is applied (ܝ ൌ 0) while on 
the symmetry plane (3D model) the symmetry 
boundary condition prescribes no flow 
penetration and vanishing shear stress. At the 
interface between the porous matrix and the pipe 
the implemented boundary condition enforces 
continuity for the velocity field and for the 
pressure. We use piecewise quadratic triangles 
for the velocity components and piecewise linear 
triangles for the pressure (P2-P1 finite elements). 

In the models that adopts the Darcy’s law 
and Fracture flow interface (DL and DL+FF) the 
hydraulic head is defined at the inlet and the 
outlet of the domain. Continuity of the pressure 
is enforced on the internal boundaries. Models 
adopting  piecewise quadratic (P2) and piecewise 
linear (P1) triangles are compared. 

 
Figure 3. 3D numerical model: the dark area 
corresponds to the pipe. The discretization is much 
finer in the pipe and its surroundings. 
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Figure 4. Details of the discretization: the pipe is 
modelled as a 3D domain in the Free and porous 
media  and Darcy’s law interface (a) and as a 2D 
domain in the Fracture flow interface (b); in FPM two 
layers of boundary elements have been used. 
 
5. Numerical results and discussion 
 

The piping channel acts as a drain and water 
flows from the porous matrix towards the pipe, 
entering both at the head and at the bottom of the 
pipe. Figure 5 shows the flow net under the 
piping channel. The deeper the sand layer the 
more the water entering at the bottom. However 
a value ܦ௟௜௠ can be defined, above which the 
flow to the pipe is no longer influenced by a 
further increase in the depth ܦ of the sand layer.  
The pipe can be thought of as a region of the 
domain of  high permeability and, consequently, 
low hydraulic resistance. Therefore most energy 
is dissipated upstream of the pipe and only a 
very small amount of energy is dissipated in the 
pipe. The flow velocity in the pipe is some 
orders of magnitude higher than in the porous 
matrix and slightly increases towards 
downstream, as a consequence of the water 
entering all along the pipe length (Figure 6). This 
velocity increase also occurs since the cross- 

section of the pipe, for the sake of simplicity, has 
been set constant along the length. Lab 
experiments show however that the cross-section 
enlarges towards downstream, due to increasing 
erosion potential. The values of the physical 
quantities represented in Figure 6 are strongly 
dependent on the thickness of the pipe.   
 

 
Figure 5. Flow net under a piping channel. 
 
 

 
 
Figure 6. Permeability, water pressure and flow 
velocity along the seepage path at the top of the sand 
layer, at the position where the pipe develops. 
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5.1 Comparison of modelling approaches 
 

A summary of the mesh characteristics of the 
numerical models developed is presented in 
Table 4. For each model the total flow in the pipe 
is evaluated in a section close to the exit point 
and the variation with respect to the most 
accurate model, that is the one that makes use of 
the FPM interface, is reported in the table. 

We observe that moving from FPM to DL 
interface the degrees of freedom are reduced. 
The number of elements also slightly reduces as 
boundary layers are no longer needed and first 
order elements can be adopted. By modelling the 
pipe with the FF interface we have the possibility 
to considerably reduce the number of elements in 
the pipe and its surroundings. No relevant 
difference exists among the results of the FPM 
and DL interface, despite it has been observed 
that the hypothesis of parallel flow in the pipe is 
not satisfied at the head of the pipe. 

 Some discrepancies arise using the FF 
interface, which decrease if the mesh is 
coarsened.  

By varying the depth of the sand layer with a 
parametric sweep, we observe that the flux in the 
pipe obtained with FF interface is 
underestimated of an amount that increases with 
the depth of the sand layer up to ܦ௟௜௠ and 
remains constant after a further increase of the 
depth. The increase of the error follows the same 
trend of the increase of the flux at the exit of the 
pipe (Figure 7).  
 
Table 4. List of numerical models compared, mesh 
characteristics and error respect to FPM interface. 

Inter- 
face 

Elem. 
Type 

N. 
Elem. 

N. 
DOF 

E % 

2D 
FPM P2+P1 10.3k 53k 0.0 
DL P2 8.7k 18k 0.1 

DL P1 8.7k 4.6k 0.2 

DL+FF P1 8.7k 4.6k -3.5 
DL+FF P1  1.3k 2.7k -3.3 

3D 
FPM P2+P1 467k 2536k 0.0 
DL P2 122k 177k 0.2 
DL P1 122k 24k 1.5 
DL+FF P1 77k 16k -11.2 
DL+FF P1  22.7k 4.8k -2.8 

 
Figure 7. Error committed using the Fracture Flow 
interface and flux at the exit of the pipe for increasing 
(normalized) depth of the sand layer. 
 
5.2 Influence of the boundaries 
 

We investigated the influence exerted on the 
flow field by the walls of the box, as they 
constitute a limit to the flow in comparison with 
the field condition. This was achieved by varying 
the thickness ܦ and semi-width ܤ of the sand 
box with a parametric sweep.  

Figure 8.a shows the variation of the 
hydraulic head induced by the presence of the 
pipe, normalized with reference to the 
undisturbed head:  

௥௘௟ܪ∆  ൌ
,ݔሺܪ ,ݕ ሻݖ െ ,ݔ଴ሺܪ ,ݕ ሻݖ

,ݔ଴ሺܪ ,ݕ ሻݖ
 (10) 

The size of the model is 0.32=ܮ=ܤ=ܦm. The 
red contour delimits the volume outside which 
the decrease of the hydraulic head is lower than 
5% of the undisturbed value.  

The volume affected by the presence of the 
pipe is axisymmetric around the pipe axis only if 
the depth of the sand layer is larger than ܦ௟௜௠ as 
in Figure 8.a. Figure 8.b shows the variation of 
the hydraulic head induced by the pipe for a sand 
layer with thickness ܮ0.2=ܦ. The area influenced 
by the pipe spreads laterally: more water is 
beckoned by the pipe from the sides, since it is 
not available from the bottom. 

Figure 9 illustrates how the error generated 
by the presence of the lateral walls diminishes as 
the size of the box increases. The error is 
calculated as the variation of pressure drop in the  

0.0E+00

1.0E-06

2.0E-06

3.0E-06

4.0E-06

5.0E-06

6.0E-06

7.0E-06

8.0E-06

9.0E-06

1.0E-05

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.25 0.5 0.75 1 1.25 1.5

Q (m2/s)E (%)

D / L

Error
Flux



 

 
(a) 

      
(b) 

 
Figure 8. Relative variations of the pressure induced 
by the presence of the pipe for different depths of the 
sand layer: D=L (a) and D=0.2L (b). The red curve 
indicates a 5% variation. 

 
Figure 9. Error generated by close boundaries as 
function of normalized semi-width B and depth D of 
the box. 
      

 
Figure 10. Radius of influence of the pipe as function 
of the normalized length of the pipe. 
 
pipe with respect to the case of far boundaries. 
The error is lower than 2% if ܮ0.5<ܦ=ܤ.  

It was also investigated how the radius of 
influence varies as the length of the pipe 
increases (Figure 10). The radius of influence is 
defined as the maximum distance from the pipe 
beyond which the drop in hydraulic head is  
lower than 5% of the undisturbed value. When 
the pipe reaches upstream the sudden pressure 
rise in the pipe causes the radius of influence to 
fall down up to the value of the radius of the pipe 
itself, because the pipe does not act anymore as a 
drain. 
 
6. Conclusions  
 

Our work shows that laminar flow in piping 
channels can be modelled in COMSOL with a 
limited computational effort by using Darcy’s 
law. The permeability assigned in the pipe 
should be derived from the cubic law, if the 
cross-section of the pipe is elongated, or, more 
generally, from the Poiseuille formula. However 
the high aspect ratio of the geometry requires 
many elements to discretize the pipe and its 
surroundings, especially when modelling real, 
full-scale structures.  To overcome this problem 
the performance of the Fracture flow interface 
has been tested. The Fracture flow interface 
underestimates the flow in the pipe if a fine mesh 
is used along the pipe, but the performance 
improves by increasing the size of the mesh. 
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