

Particle Focusing Optimization with a Magnetic Horn

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Silvestro di Luise

Swiss Federal Institute of Technology, ETH, Zürich, Switzerland CERN, Organisation européenne pour la recherche nucléaire, Genevea, Switzerland Silvestro.Di.Luise@cern.ch

Produced neutrinos travel through the crust towards the far detector

For neutrinos of few GeV's energy the oscillation probability is maximal at a distance of 1-2 10³ km

Neutrino Energy Spectrum at a distance L over a surface A is determined by the **Divergency** (θ) of the focused parent π 's beam, the solid angle **Acceptance** and the **Lorentz boost** (β_{π}) relativistic effect.

$$E_{\nu} = \frac{1}{2(E_{\pi} - p_{\pi} cos\theta_{\pi\nu})} \Omega_{\pi}$$

$$\Omega_{\pi} = \frac{1}{4\pi} \frac{A}{L^{2}} \frac{1 - \beta_{\pi}^{2}}{(\beta_{\pi} cos\theta_{\pi\nu} - 1)^{2}}$$

➤ Horn: two coaxial conductors
 (Aluminium, thickness ~3 mm)

- > Pulsed with current *I≈200 kA*
- Toroidal Magnetic Field $B \sim I/r$ (max ≈ 2 T)

Internal Horn conductor and the full device instrumentation (FNAL)

Geometry & Field Map Mesh Modules (v4.3b): AC/DC Particle Tracing Optimization

Optimization

PROGRAM

Optimize Horn/Target design to minimize π 's divergency in the energy (E_v) range correlated to the oscillation probability ($P(v_u \rightarrow v_e)$) peaks

Control variables:

- -Horn profile, parameterized as a double parabola
- -Target position

Objective Function:

-Relative integrated energy flux in the range where oscillation probability is maximal

External Input to the Particle Tracing:
Bi-dimensional Momentum-angle spectrum

of π 's produced off the target

CAVEAT:

Perfect focusing is possible for particles of a fixed momentum (and for all the production angles) while π 's are produced in a wide range of momenta and from a non point-like source (the finite-length target)

REFERENCES:

S. di Luise *et al.:* PoS ICHEP2012 (2013), C12-07-4