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Abstract

For the last two centuries, the conventional Fourier heat conduction equation has been used for
modeling a diffusive nature of macroscale heat conduction by considering the energy
conservation and Fourier's linear approximation of heat flux. However, it cannot accurately
predict heat transport when the length scale is comparable to or smaller than the mean free path of
thermal energy carriers or when the time scale is shorter than the carrier relaxation time [1-5]. As
microelectronic devices keep shrinking below the mean free path of thermal energy carriers,
fundamental understanding of sub-continuum heat conduction becomes critically important for the
effective power management and reliable operations.

For the phonon-dominant thermal energy transport, the Boltzmann transport equation (BTE) has
shown promising results in predicting the ballistic-diffusive nature of heat transfer and
temperature distribution [5-10]. Many numerical models have been developed to accurately
compute the BTE in various multi-dimensional geometries. Such methods include the finite volume
method (FVM) [11-13,15-17], the finite element analysis (FEA) [18-20], and the finite difference
method (FDM) [7,8,14,21], combined with the discrete ordinate method (DOM) for angular
discretization. In addition, the ballistic-diffusive approximation of the BTE has been introduced to
alleviate computational complexities in directly solving the BTE while conveying the ballistic-
diffusive features of phonon heat transport [21-24]. However, these methods are not widely
available to general public, including undergraduate and graduate students who are not familiar
with sub-continuum heat transfer, mainly due to the complexities in numerical modeling of the
BTE. In order to address this challenge, we make use of a commercially available finite element
method (FEM) package to compute the BTE based on the gray relaxation-time approximation.

Using COMSOL Multiphysics® software, PDE (partial differential equation) interfaces are used
to define the BTE governing equation. In this study, the discrete ordinate method (DOM) is
implemented to discretize the BTE in angular directions using multiple PDE modules while it is
spatially discretized by the FEM. This method is validated by comparing the FEM results for a
long rectangular geometry with the 1D analytic solution of phonon radiative transfer (EPRT) (fig.
1) as well as 2D ballistic-diffusive equation and finite difference solution for BTE (fig. 2).



Various multi-dimensional geometries will be considered to investigate the ballistic behavior of
heat conduction and the boundary scattering effect (fig. 3). The ray effect will also be discussed
as the biggest error source in obtaining accurate solution. This is done by using different numbers
of PDE equations, i.e. 4 equations up to 256 equations (fig. 4). By defining appropriate terms for
Dirichlet boundary conditions, we were able to solve the problem for both heating boundaries
and boundaries with constant temperature. The success of this study will provide a reliable
engineering tool in computing ballistic-diffusive heat conduction in micro/nanostructures.
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Figure 1: (a) Nondimensional temperature distribution along its center line of the rectangular
domain with a high aspect ratio. Temperature distribution is normalized using the hot and cold
boundaries, i.e., . To validate the model, the computation results are compared with the semi-
analytical solution of the 1-D equation of phonon radiative transfer (EPRT) [2]. (b) Temperature
distribution along the centerline of the rectangular domain illustrated in the inset. Results are
compared with BTE-FDM and BDE fromref. [21] for further validation.
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Figure 2: Nondimensional temperature distribution predicted with the BTE for different Kn
numbers. For comparison, nondimensional temperature distribution predicted with the Fourier heat
conduction equation is also plotted.
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Figure 3: Transient nondimensional temperature changes along the centerline of the square
domain computed by the BTE simulation for Kn= 0.1.

Figure 4: COMSOL snapshot for Kn= 0.1.



