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For decades, silicon has been considered the optimal material for electronics mass production. In the last few years, the possibility to realize highly performing active and passive photonic integrated devices, p p y , p y g y p g p p g
using Silicon-on-Insulator (SOI) technological platform has been widely proved [1]. One of the most important aspects of any integrated optical technology for sensing or communication applications is theusing Silicon on Insulator (SOI) technological platform has been widely proved [1]. One of the most important aspects of any integrated optical technology for sensing or communication applications is the
evaluation and control of the optical birefringence [2]-[3] Generally speaking the optical birefringence depends on the waveguide cross section material and plasma dispersion effect [4] and mechanicalevaluation and control of the optical birefringence [2]-[3]. Generally speaking, the optical birefringence depends on the waveguide cross section, material and plasma dispersion effect [4], and mechanical
stress In this contest a detailed study has been proposed in [5] demonstrating that the stress engineering can be considered an effective tool to modify or eliminate polarization dispersion in SOI waveguidestress. In this contest, a detailed study has been proposed in [5], demonstrating that the stress engineering can be considered an effective tool to modify or eliminate polarization dispersion in SOI waveguide
device for a wide range of waveguide cross section shapes and sizes In addition calculations and experiments proposed in [5] confirm that the SiO cladding induced stress can be used to eliminate thedevice, for a wide range of waveguide cross-section shapes and sizes. In addition calculations and experiments proposed in [5] confirm that the SiO2 cladding induced-stress can be used to eliminate the
bi f i i SOI id f bit h f t i l fil t l i f 100 t 300 MP Th f th l f thi k i t d l lf i t t d i t t d h i dbirefringence in SOI waveguides of arbitrary shapes for typical film stress values ranging from 100 to 300 MPa. Therefore, the goal of this work is to develop a self-consistent and integrated approach, in order
t li th l i t d i [5] i l di th l d h i l t ff t id d ti i ti l ib id I ti l li ti ib id i ft i t tto generalise the analysis presented in [5] including thermal and mechanical stress effects on guided-wave propagation in optical rib waveguides. In practical applications, a rib waveguide is often in contact
with a surface at higher temperature that causes heat flow into the device: this results in material strain and, ultimately, in an optical birefringence. Besides, in many applications of such components, strain is
also produced by a pressure that acts on the device. The situation is illustrated in Fig. 1 (a), where F is the force applied on the device and Q is the heat propagating into it. A silicon-on-insulator rib waveguidep y p g ( ) pp p p g g g
is in contact with an aluminum layer through a silica layer; the heat flow is caused by the heated aluminum layer whose temperature is higher than that of the rib. The aluminum layer also transmits the pressurey g y ; y y p g y p
on the component. The stresses applied to the waveguide material structure cause each mode to be rotated. Thus, in this paper we use Comsol Multiphysics™ [6] to obtain a fully integrated simulations of SOIon the component. The stresses applied to the waveguide material structure cause each mode to be rotated. Thus, in this paper we use Comsol Multiphysics [6] to obtain a fully integrated simulations of SOI
waveguides in order to estimate the birefringence compensationwaveguides in order to estimate the birefringence compensation.
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Figure 2 Steady state temperature distribution induced by aluminum Figure. 3. Von Mises stress distribution for TAl = 350 K and Fy = 105 N/m^2.Figure. 2. Steady-state temperature distribution induced by aluminum 
layer at T = 350 K

Figure. 3. Von Mises stress distribution for TAl 350 K and Fy 10 N/m 2.
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Figure. 4. x-component of electric field (quasi-TE mode) Figure. 5. y-component of electric field (quasi-TM mode)g p (q )
for TAl = 350 K and Fy = 105 N/m2 (Wg1).

Figure. 5. y component of electric field (quasi TM mode) 
for  TAl= 350 K and Fy = 105 N/m2 (Wg1).for  TAl  350 K and Fy  10 N/m (Wg1).

NUMERICAL RESULTSNUMERICAL RESULTS
( )⎧ ( )0 1 2x x y zn n B B⎧ − = − − +⎪

⎨
σ σ σWg1: HS = 0.22 μm, W = 1 μm, H = 1 μm, HR =0.78 μm; Wg2: HS = 0.22 μm, W = 0.5 μm, H = 0.61 μm, HR =0.39 μm.
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PARAMETERS VALUES ( )0 1 2y y x zn n B B− = − − +⎪⎩ σ σ σ
Si Young’s modulus, EY (Si) 170 (GPa)

( )y y⎩
g Y ( ) ( )

SiO2 Young’s modulus EY (SiO2) 70 (GPa)SiO2 Young s modulus, EY (SiO2) 70 (GPa)
Si Poisson’s ratio (Si) 0 28Si Poisson s ratio, (Si) 0.28

SiO2 Poisson’s ratio, (SiO2) 0.17
Si linear thermal expansion coefficient, (Si) 2.6×10-6 (K-1)p ff , ( )

at 293 K
( )

at 293 K
Li th l i ffi i t 0 5 10 6 (K 1)Linear thermal expansion coefficient, 0.5×10-6 (K-1)

(SiO2) at 293 K2

Photoelastic coefficient p11(Si) -0.101Photoelastic coefficient p11(Si)
Photoelastic coefficient p (Si)

0.101
0 0094Photoelastic coefficient p12(Si)

Ph l ff (S O )
0.0094
0 16Photoelastic coefficient p11(SiO2) 0.16

Figure 6 Effective index versus temperature for quasi-TE and Figure 7 Effective index versus applied pressure for quasi-TE and
Photoelastic coefficient p12(SiO2) 0.27

Figure. 6. Effective index versus temperature for quasi TE and 
quasi-TM modes (Wg1).

Figure. 7. Effective index versus applied pressure for quasi-TE and 
quasi-TM modes (Wg1). ff p12( 2) q ( g ) q ( g )
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