

Structural Evaluation of a Hydraulic Loader Crane Using Structural Mechanical (Comsol Multhiphysics®)

M.S. Anderson Braun DR. Angela B.D. Moura Feevale University Novo Hamburgo – RS Brazil

Campus I | Av. Dr. Maurício Cardoso, 510 • Hamburgo Velho • Novo Hamburgo/RS • CEP 93510-250 Campus II | ERS-239, 2755 • Novo Hamburgo/RS • CEP 93352-000 | +55 51 3586.8800 • www.feevale.br

1. Introduction

Loader cranes

- Machine with a complex structural design;
- Use of different materials (HSLA, Copolyamide, cast parts).
- Failure in the structure causes material damage and risks to life;
- The objective is to evaluate the stress in the structure and compare it with results from structural calculation according to DIN EN 12999.

1. Introduction

Figure 1. Crane's 3D model, boom steel profile (a), rear sliders (b) and front sliders (c).

1. Introduction

Figure 1. Crane's geometric points.

Point	Α	В	С	D	E	F	G	Н	I	J	К	L	Μ	Ν
Total Reation (Kgf)	36097	33601	65526	36097	65926	65526	18798	18656	12982	10578	10403	5897	3082	2421

Table 1. Reactions in the Geometric Points.

2. Computational Methods

- Solid Mechanical's module
- Linear Elastic Material
- Stationary.

The equations solved in the model are:

$$-\nabla . \, \sigma = F v, \qquad \sigma = s$$

Tension - Deformation

$$\varepsilon = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}} \right)$$

Total strain tensor

 $s = s_0 + C: (\varepsilon - \varepsilon_0 - \alpha \theta)$

The Duhamel-Hooke's law

2. Computational Methods

Figure 2. Crane first boom: hexagonal profile (a), sliders (b) and applied boundary conditions.

3. Results

Figure 3. Stress obtained in the first boom structure (a) and sliders (b) [MPa].

3. Results

Figure 4. Deformation in the first boom structure [mm].

3. Results

Component	DIN EN 12999	FEA results	Difference		
Upper Steel Profile	370 MPa	320 MPa	-15,63%		
Lower Steel Profile	370 MPa	420 MPa	11,90%		
Upper Slider	14 MPa	17 MPa	17,64%		
Lower Slider	14 MPa	14 MPa	0,00%		

Table 2. Calculation and Numerical Simulation results.

4. Conclusions

- Values of the static simulation are close to the results of the structural calculation;
- Through simulation we can achieve the maximum stresses location, optimizing the design;
- For future studies, it is possible to conduct nonlinear analysis and verify the influence of the clearance between the sliders and the steel profile.

Thank You!

abraun@feevale.br

Questions?

