

Modeling a Nozzle in a Borehole

Ekkehard Holzbecher, Fengchao Sur Georg-August Universität Göttingen

Introduction

In several geo-technological applications water has to be infiltrated into the subsurface. We are investigating the DSI-method to enhance infiltration volume and speed.

A nozzle, installed in an injecting borehole, can enhance the infiltration rate into the subsurface porous medium significantly. Using Finite-Element simulations of turbulent flow we examine the effect of the nozzle and screen geometry on the flow field within the borehole. In a second step free flow in the borehole is coupled with porous media flow in the surrounding.

Flow from top to bottom

Without filters

DN 100 (4") DIN 4925

	ölsch	
Norm		
Gepr.		
Beerb.	07.0	
	De	
DIÃ	Freimaßisteran grob DIN 2768	
Freim		

Model Set-up

Parameters:

- L 15[m] length comp1
- rp 0.08[m] pipe radius
- Qp 15[m³/h] flow rate
- vp Qp/pi/rp/rp mean velocity
- Lp 0.5[m] pipe length before nozzle
- Ln 0.05[m] nozzle length
- rn 0.04[m] nozzle radius
- Le 0.5[m] length behind nozzle
- Lout 0.05[m] length below outlets

- 2D Radial Geometry
- k-epsilon, k-omega Modes
- Components Comp1:
- Geometry: Rectangle, length L, radius rp
- Material: Water
- Fluid properties: from material (20° C)
- Initial values: p=0, v=w=0, kinit, epinit
- Boundary conditions:
- Axial symmetry (1)
- Wall (4): wall functions
- Inlet (2): velocity vp, turbulent intensity 0.05, turbulent length scale 0.01 m
- Outlet (3): p=0, suppress backflow

Model	Geometr y	Dime n-	Outlet	Porous mediu
		sion		m
1	Simple	2D	bottom	no
2	2" nozzle	"	"	"
3	77	3D	"	"
4	77	2D	rings	77
5	77	"	"	yes

Result Velocity Magnitude

Model 4

Velocity magnitude

High (red), low (blue)

Model 4

Wall lift-off, depending on turbulent closure; left: k- ε , right: k- ω

Coupling with Porous Medium

+ Result

 Surface plot of velocity magnitude [m/s]

Streamlines

Examined, due to

- Permeability
- Porosity
- Lout (length below outlets)
- Friction coefficient
- Extension of porous subdomain
- Pumping rates
- Forchheimer term

+ Conclusions

- Free laminar or turbulent flow in one sub-domain can be coupled with porous media flow in a connected sub-domain
- In free and porous media mode inertial terms and nonlinear Forchheimer terms can be considered as extensions of the linear Darcy-approach
- For slightly turbulent flow nonlinear terms have small effects only, and can be neglected
- Relatively small extension of porous media sub-domain (20 cm) already does not provide any disturbances from the outflow boundary condition
- Turbulence closure using $k-\omega$ works better than $k-\varepsilon$

Acknowledgement:

The authors appreciate the support of 'Deutsche Bundesstiftung Umwelt (DBU)' for funding within the DSI project (AZ28299-23).