A 2 Model of the Flow in Hydrocyclones

B. Chinè ${ }^{1}$, F. Concha ${ }^{2}$ and M. Meneses ${ }^{3}$
${ }^{1}$ Escuela de Ciencia e Ing. Materiales, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica;
${ }^{2}$ Departamento de Ing. Metalúrgica, Universidad de Concepción, Concepción, Chile;
${ }^{3}$ Escuela de Ing. en Producción Industrial, Instituto Tecnológico de Costa Rica, Cartago,Costa Rica

bchine@itcr.ac.cr

Presentation overview

- Introduction
- Swirling flows in hydrocyclones
- Geometry and experimental values of the simulated flow
- Physical model and equations
- Numerical results
- Conclusions

Swirling flows in hydrocyclones

3D swirling flow confined in cylinder-conical geometries [1,2,3,4]

- Tangential velocity $v_{\theta} \rightarrow$ Rankine vortex $v_{\theta}=k_{1} r$ forced vortex (rotation of a rigid body) $v_{\theta}=k_{2} / r$ free vortex (potential vortex)
- Axial velocity $v_{z} \rightarrow$ two opposite flows a flow direct to the apex and a reverse flow direct to the vortex finder
- Radial velocity $v_{r} \rightarrow \quad$ small $\left(10^{-2} \mathrm{~m} / \mathrm{s}\right)$
- Air core \rightarrow controls the liquid splitting to the outlets

Swirling flows in hydrocyclones

From experimental works (LDV) we know that the flow in a hydrocyclone (conical and flat bottom) has the following properties:
$\Rightarrow \quad$ velocity profiles of v_{z} and v_{θ} are not completely axisymmetric
$\Rightarrow \quad v_{z}, v_{\theta}$, and their RMS values σ_{z} and σ_{θ}, only change their magnitude with pressure Δp
$\Rightarrow \quad v_{z}$ changes with z
$\Rightarrow \quad$ turbulence is neither homogeneous nor isotropic : σ_{z} and σ_{θ} are different and depend on z and r
$\Rightarrow \quad$ the position of the air core does depend on Δp and the ratio $D_{V F} / D_{D}$ (vortex finder diameter/apex diameter)

Geometry and experimental values

hydrocyclone diameter $D=102 \mathrm{~mm}$
liquid = water
dynamic viscosity $\mu=10^{-3}$ Pa.s density $\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

	$\Delta p(p s i)$	$Q(1 / s)$	Re
Conical	4	1,65	$2,06 \times 10^{4}$
Flat bottom	4	1,42	$1,77 \times 10^{4}$

where $\quad R e=\rho V D / \mu$
and $V=4 Q / \pi D^{4}$ (mean axial velocity inside the hydrocyclone)

Physical model

TEC
 Tecnológico de Costa Rica

Equations: RANS and $k-\omega$

$$
\begin{aligned}
\rho \frac{\partial \mathbf{U}}{\partial t}+\rho \mathbf{U} \cdot \nabla \mathbf{U}+\nabla \cdot \overline{\left(\rho \mathbf{u}^{\prime} \otimes \mathbf{u}^{\prime}\right)} & =-\nabla P+\nabla \cdot \mu\left(\nabla \mathbf{U}+(\nabla \mathbf{U})^{T}\right)+\mathbf{F} \\
\rho \nabla \cdot \mathbf{U} & =0
\end{aligned}
$$

Reynolds-averaged Navier-Stokes (RANS) equations [5]

$$
\begin{aligned}
\rho \frac{\partial k}{\partial t}+\rho \mathbf{u} \cdot \nabla k & =P_{k}-\rho \beta^{*} k \omega+\nabla \cdot\left(\left(\mu+\sigma^{*} \mu_{\mathrm{T}}\right) \nabla k\right) \\
\rho \frac{\partial \omega}{\partial t}+\rho \mathbf{u} \cdot \nabla \omega & =\alpha \frac{\omega}{k} P_{k}-\rho \beta \omega^{2}+\nabla \cdot\left(\left(\mu+\sigma \mu_{\mathrm{T}}\right) \nabla \omega\right)
\end{aligned}
$$

Transport equations for the turbulent kinetic energy κ and the specific dissipation rate ω [5]

In Comsol, for modeling the turbulence of this swirling flow we use the \boldsymbol{k} - ω turbulence model.
$\boldsymbol{k}-\omega$ represents the turbulence as isotropic (anisotropic in hydrocyclones) : anyway it should give a better description of the turbulence compared to the available ones.

Numerical computations: streamlines in the conical hydrocyclone

Numerical computations: streamlines in the flat bottom hydrocyclone

Conical: numerical results of v_{θ} and LDV measurements

LDV

LDV
\Rightarrow
numerical results are not satisfactory in the free vortex flow region: the velocity profiles could be very dependent on the turbulence model used in the simulations [6,7]

Conical: numerical results of v_{z} and LDV measurements

 LDV

Numerical results are quite satisfactory: two opposite flows are obtained and the real locus of $v_{z}=0$ is simulated. The numerical results could depend on other factors, e.g the air core precession, not considered in the model.

18/11/2014

Flat bottom: numerical results of v_{θ} and LDV measurements

LDV

forced vortex

LDV

\Rightarrow Numerical results are not satisfactory in the free vortex flow region: the velocity profiles could be very dependent on the turbulence model used in the simulations [6,7]

Flat bottom: numerical results of v_{z} and LDV measurements

Numerical results are quite satisfactory: two opposite flows are obtained and the real locus of $\mathrm{v}_{\mathrm{z}}=0$ is simulated. The numerical results could depend on other factors, e.g the air core precession, not considered in the model.

18/11/2014

Conclusions

- Swirling flows in 2D hydrocyclones have been simulated by developing an axisymmetric model of the flow
- The general flow pattern is quite well reproduced
- Tangential velocity profiles differ from LDV measurements, they give a poor description of the free vortex: the $k-\omega$ turbulence model doesn't assume anisotropy, which is present in the flow
- Axial velocity profiles are quite satisfactory: some difference with LDV measurements could also be dependent on other factors, e.g. the air core precession, not considered here
- Although more complete models might be developed, e.g. 3D, including the modeling of the air core, the anisotropy of the turbulence, etc., computational requirements and computing times have to be considered.

TEC
 Tecnológico de Costa Rica

References

[1] D.F. Kelsall , A study of the motion of solid particles in a hydraulic cyclone, Trans. Instn Chem. Engrs, 30, 87-108 (1952).
[2] F. Concha, Flow pattern in hydrocyclones, KONA, 25, 97-132 (2007).
[3] K.T. Hsieh and R.K Rajamani , Mathematical model of the hydrocyclone based on physics of fluid flow, AIChE Journal 37(5), 735-746 (1991).
[4] B. Chiné and F. Concha , Flow patterns in conical and cylindrical hydrocyclones, Chemical Engineering Journal, 80(1-3), 267-274 (2000).
[5] Comsol AB, Comsol Multiphysics-CFD Module, User's Guide, Version 4.3b (2013).
[6] A. Davailles, E. Climent and F. Bourgeois, Fundamental understanding of swirling flow pattern in hydrocyclones, Separation and Purification Technology, 92, 152-160 (2012).
[7] Y. Rama Murthy and K. Udaya Bhaskar, Parametric CFD studies on hydrocyclone, Powder Technology, 230, 36-47 (2012).

Acknowledgements

Many thanks for your attention!

We would like to also acknowledge:

TEC $\begin{aligned} & \text { Tecnológico } \\ & \text { de Costa Rica }\end{aligned}$
Vicerrectoría de Investigación y Extensión

Universidad de Concepción
... and to the organizers of the 2014CAMBRIDGE

