Multiphysics Simulation for Microwave Drying Spherical Materials

Huacheng Zhu^{1,2}, Tushar Gulati² Ashim K. Datta², and Kama Huang¹ 1 Institute of Applied Electromagnetics, Sichuan University, Chengdu, China 2 Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY

Introduction

- Microwave drying of fruits and vegetables has been found to result in large textural changes in the product such as puffing, crack formation and even burning due to the inhomogeneous heating of the microwaves
- \succ Microwave drying of potatoes is a complex interplay of mass, momentum and energy transport.
- > Three phases are considered in the system: solid (skeleton), liquid (water) and gas (water vapor and air).

Temperature profiles validated by optical thermometer

- Concentration of different species was solved for using the Transport of Dilute Species module (for liquid water) and Maxwell-Stefan Diffusion model (for vapor and air) together with Darcy Law (to calculate Gas Pressure).
- Microwave oven worked in 10% power level (Cycle/ Way). Shrinkage effects have been ignored.

Poynting Theorm

Results

The coupled Electromagnetic and Transport Model developed above was solved by FEM method to obtain the moisture content ,temperature et al.

10% Power Level Cycle Heating

The microwave oven input power reduced by the cycle way

Temperature Profile

- Moisture loss through evaporation

Simulated Moisture Distribution (after 8 cycles)

Coefficient of varition

Conservation of momentum – Darcy's flow

change, binary diffusion

Potatoes treated as a porous material

Governing Equations

Conservation of Mass

Water:

 $\frac{\partial c_{w}}{\partial t} + \nabla \cdot (c_{w} \mathbf{v}_{w}) = \nabla \cdot (D_{w} \nabla c_{w}) - \dot{I}$

Gas:

Vapor:

 $\frac{\partial c_g}{\partial t} + \nabla \cdot (c_w \mathbf{v}_w) = \dot{I}$ $\frac{\partial c_v}{\partial t} + \nabla \cdot (c_w \mathbf{v}_w) = \nabla \cdot \left(\varphi S_g \frac{C^2}{\rho_g} M_a M_v D_{eff,g} \nabla x_v \right) + \dot{I}$

Conservation of Energy

Temperature

Simulated and experimental surface temperature

Temperature profiles of cross-section validations by infrared camera:

Time (s)

Time (s)

Conclusion

 \triangleright A mechanistic approach that predicts the microwave drying process of potatoes has been developed

 \succ The model could aid in predicting key quality attributes associated with the microwave drying process

Excerpt from the Proceedings of the 2014 COMSOL Conference in Shanghai