Study of Pull-in Voltage in MEMS Actuators

Prashant D.Hanasi^{#1}, B. G. Sheeparamatti^{*2}, Kirankumar B.B^{#3}

Basaveshwar Engineering College, Bagalkot, Department of Electronics and Communication, Karnataka, INDIA Prashanthanasi8790@gmail.com sheepar@yahoo.com kiranb4004@gmail.com

Introduction: As the voltage bias increases from zero across a pair of parellel plates,the distance between such plates would decrease until they reach 2/3 of the original spacing,at which point the two plates would be suddenly snapped into contact.This behavior is called the pull-in effect.And the voltage that is required for this pull-in operation to take place is called the pull-in voltage..

Results: Therotical calculation can be made using the equation 7 and 8 we will get the stiffness constant as K=0.0531 N/m and Vpi as 3.77V. And simulated value of pull-in voltage is 19.7V.

Figure 1. Schematic diagram of MEMS actuator

Figure 2. Simulated model of MEMS actuator

Pull-in voltage(Vpi) calculation:

The stiffness constant of the actuator is given by

$$\mathsf{K} = \frac{EWt^3}{4L^3} \dots (1)$$

The pull-in voltage equation is given by

Vpi =
$$\sqrt{\frac{8kd^3}{27 \in 0A}}$$
.....(2)

Features of Actuators:

Figure 3. Deflection v/s applied voltage

Conclusions: Vpi can be reduced by increasing the area of actuator, and also by reducing gap and thickness of actuator and hence vpi reduced 19.7V to 12.1 V.

References:

1. Foundations of MEMS by chang liu 4th chapter electrostatic sensing actuation.

 Design of low actuation voltage RF MEMS Switch Serigo P.Pacheo¹ Linda P.B.Katehi¹Clark T-C.Nguyen²

Variable	Value	Units
Length	100	μm
Width	10	μm
thickness	0.5	μm
density	2329	Kg/m3
Poison's ratio	0.28	

3. Performance Analysis and Optimization of Lumped Parameters of Electrostatic Actuators for Optical MEMS Switches by D M.Madheswaran , International Journal of Computer Science and Information Security, Vol. 7, No. 1, 2010

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore