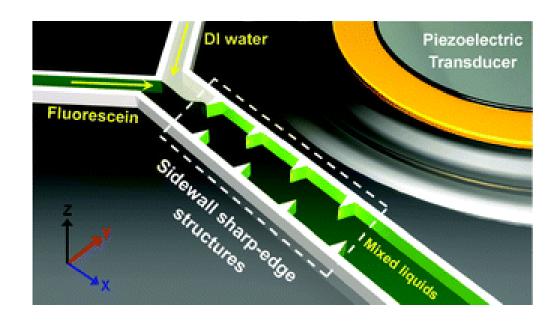


Acoustic Streaming Driven Mixing



Nitesh Nama, Po-Hsun Huang, Francesco Costanzo, and Tony Jun Huang

Department of Engineering Science and Mechanics
The Pennsylvania State University, State College, PA, USA

Outline

- Motivation
- Introduction to sharp-edge based micromixer
- Numerical scheme
- COMSOL Modeling and convergence
- Results
- Conclusion and Outlook

Motivation – Lab on a chip

Lab on a chip (LOC) – A device that integrates one or several of the laboratory functions onto a small chip.

- Low-cost.
- Faster results.
- Low sample consumption.
- Point-of-care diagnostics.
- Ease of operation.

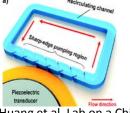
Microfluidics towards lab-on-a-chip

Common functionalities needed:

Fluid manipulation

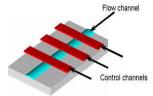
Mixing

Pumping



Huang et al, Lab on a Chip, 2014.

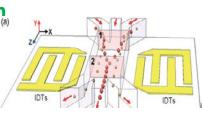
Valves



Melin et al, Ann. Rev. Biophys., 2007.

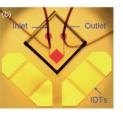
Particle/Cell manipulation

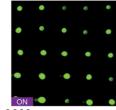
Separation



Shi et al, Lab on a Chip, 2009.

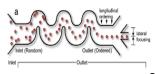
Patterning

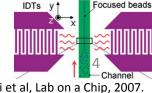




Shi et al, Lab on a Chip, 2009.

Focusing





Di Carlo, PNAS, 2007.

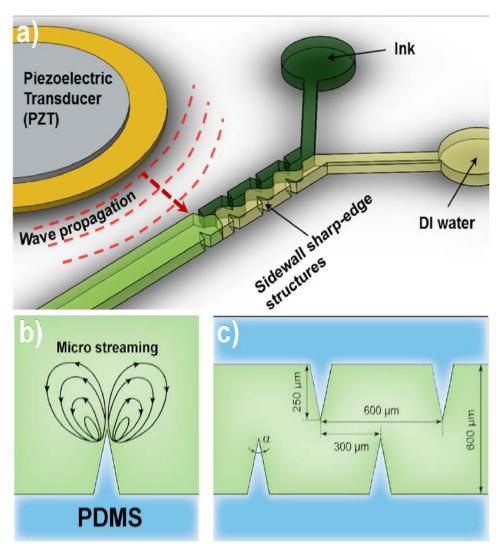
Shi et al, Lab on a Chip, 2007.

Challenges at microscales:

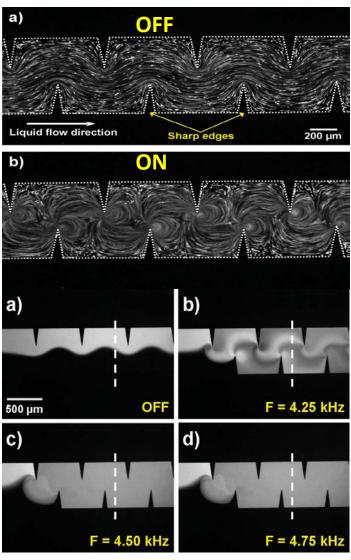
Low Reynolds number Slow diffusion dominated mixing

• Difficult fluid pumping
$$\Delta P = \frac{8\mu L}{\pi r^4}$$

Sharp-edge based microfluidic mixing



Nama et al, Lab on a Chip, 2014.



Huang et al, Lab on a Chip, 2014.

Governing equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

Balance of linear momentum

$$\rho \frac{\partial \mathbf{v}}{\partial t} + \rho (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla p + \mu \nabla^2 \mathbf{v} + \left(\mu_b + \frac{1}{3} \mu \right) \nabla (\nabla \cdot \mathbf{v})$$

Constitutive relation

$$p = c_0^2 \rho$$

Convection-Diffusion Equation

$$\frac{\partial c}{\partial t} + \nabla \cdot (c \mathbf{v}) = D \nabla^2 c$$

Numerical Challenges associated with direct solution:

- Widely separated length scales Characteristic wavelengths (1 m) vs. characteristic dimensions of microfluidic channel (10⁻³ m)
- Widely separated time scales Characteristic oscillation period (10⁻⁴ s) vs. characteristic times dictated by streaming speeds (10⁻¹ s)
- Direct simulations are possible, but are computationally expensive.

Numerical Model

Perturbation expansion

$$\mathbf{v} = \mathbf{v}_0 + \varepsilon \tilde{\mathbf{v}}_1 + \varepsilon^2 \tilde{\mathbf{v}}_2 + O(\varepsilon^3) + \cdots$$

$$p = p_0 + \varepsilon \tilde{p}_1 + \varepsilon^2 \tilde{p}_2 + O(\varepsilon^3) + \cdots$$

$$\rho = \rho_0 + \varepsilon \tilde{\rho}_1 + \varepsilon^2 \tilde{\rho}_2 + O(\varepsilon^3) + \cdots$$

Presence of a background laminar flow before actuation

Zeroth-order equations

$$\begin{split} \frac{\partial \rho_0}{\partial t} + \rho_0 (\boldsymbol{\nabla} \cdot \boldsymbol{v}_0) &= 0, \\ \rho_0 \frac{\partial \boldsymbol{v}_0}{\partial t} + \rho_0 (\boldsymbol{v}_0 \cdot \boldsymbol{\nabla}) \boldsymbol{v}_0 \\ &= -\boldsymbol{\nabla} p_0 + \mu \nabla^2 \boldsymbol{v}_0 + (\mu_b + \frac{1}{3}\mu) \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{v}_0). \end{split}$$

First-order equations

$$\begin{split} \frac{\partial \rho_1}{\partial t} + \boldsymbol{\nabla} \cdot (\rho_0 \boldsymbol{v}_1 + \rho_1 \boldsymbol{v}_0) &= 0, \\ \rho_0 \frac{\partial \boldsymbol{v}_1}{\partial t} + \rho_1 \frac{\partial \boldsymbol{v}_0}{\partial t} + \rho_0 (\boldsymbol{v}_1 \cdot \boldsymbol{\nabla}) \boldsymbol{v}_0 + \rho_0 (\boldsymbol{v}_0 \cdot \boldsymbol{\nabla}) \boldsymbol{v}_1 + \rho_1 (\boldsymbol{v}_0 \cdot \boldsymbol{\nabla}) \boldsymbol{v}_0 \\ &= -\boldsymbol{\nabla} p_1 + \mu \boldsymbol{\nabla}^2 \boldsymbol{v}_1 + (\mu_b + \frac{1}{3}\mu) \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{v}_1). \end{split}$$

Numerical Model

Second-order equations

$$\left\langle \frac{\partial \rho_2}{\partial t} \right\rangle + \nabla \cdot (\langle \rho_0 \mathbf{v}_2 \rangle + \langle \rho_2 \mathbf{v}_0 \rangle) = -\nabla \cdot \langle \rho_1 \mathbf{v}_1 \rangle,$$

$$\left\langle \rho_0 \frac{\partial \mathbf{v}_2}{\partial t} \right\rangle + \left\langle \rho_2 \frac{\partial \mathbf{v}_0}{\partial t} \right\rangle + \left\langle \rho_1 \frac{\partial \mathbf{v}_1}{\partial t} \right\rangle + \left\langle \rho_0 \mathbf{v}_1 \cdot \nabla \mathbf{v}_1 \right\rangle$$

$$+ \left\langle \rho_0 \mathbf{v}_0 \cdot \nabla \mathbf{v}_2 \right\rangle + \left\langle \rho_0 \mathbf{v}_2 \cdot \nabla \mathbf{v}_0 \right\rangle + \left\langle \rho_1 \mathbf{v}_0 \cdot \nabla \mathbf{v}_1 \right\rangle$$

$$+ \left\langle \rho_1 \mathbf{v}_1 \cdot \nabla \mathbf{v}_0 \right\rangle + \left\langle \rho_2 \mathbf{v}_0 \cdot \nabla \mathbf{v}_0 \right\rangle$$

$$= -\nabla \left\langle \rho_2 \right\rangle + \mu \nabla^2 \left\langle \mathbf{v}_2 \right\rangle + (\mu_b + \frac{1}{3}\mu) \nabla (\nabla \cdot \langle \mathbf{v}_2 \rangle)$$

Convection-Diffusion Equation

Mean Lagrangian Velocity

Effective convection velocity

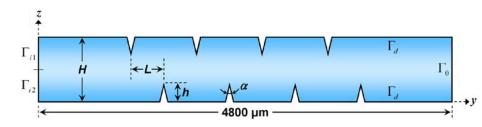
$$rac{\partial c}{\partial t} + m{
abla} \cdot (c m{v}) = D
abla^2 c$$
 Stoke's Drift
$$m{v}^{
m L} = \langle m{v}_2 \rangle + \langle (m{\xi}_1 \cdot
abla) m{v}_1
angle = m{v}_1$$

$$\mathbf{v}^{\mathrm{C}} = \mathbf{v}_0 + \mathbf{v}^{\mathrm{L}}$$

Boundary Conditions

$$\mathbf{v}_0 = \mathbf{v}_{in}, \quad \text{on} \quad \Gamma_{i1} \cup \Gamma_{i2}.$$

$$\mathbf{v}_0 = \mathbf{0}$$
, on Γ_d



First-order:

Harmonic Displacement

$$u_{y}(z) = d_0 + d_0 \left(\frac{z}{h}\right)^3$$

$$\mathbf{v}_1(t,z) = \frac{\partial \mathbf{u}(t,z)}{\partial t}, \text{ on } \Gamma_d$$

Second-order:
$$v_2 = 0$$
, on Γ_d

Convection-Diffusion Equation:

$$c=0$$
, on Γ_{i1} .

$$c=1 \ mol/m^3, \quad on \quad \Gamma_{i2}$$

No flux at walls

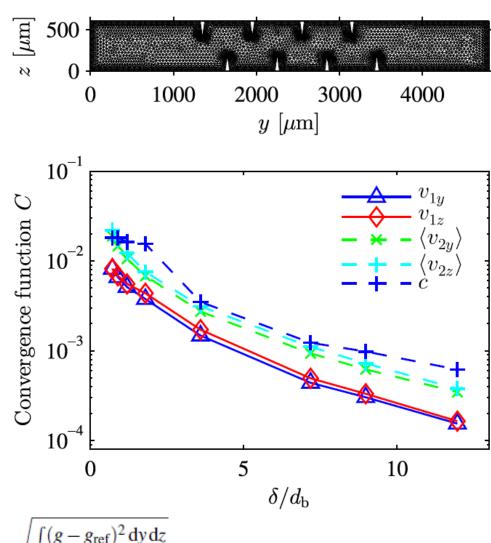
$$c\mathbf{v} = \mathbf{0}$$
, on $\Gamma_{\rm d}$

Outlet

$$c\mathbf{v} - D\nabla c = \mathbf{0}$$
, on Γ_0 .

COMSOL Modeling and convergence

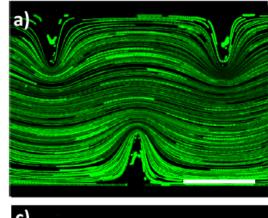
- Weak PDE interface
- P2/P1 elements for velocity and pressure.
- The sharp corners were rounded off with a small radius using Fillet
- Parametric sweep for the mesh size to obtain mesh convergence.
- Finer mesh near the boundaries to resolve the boundary layers.



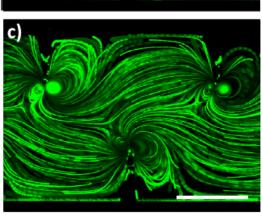
$$C(g) = \sqrt{\frac{\int (g - g_{\text{ref}})^2 \, dy \, dz}{\int (g_{\text{ref}})^2 \, dy \, dz}}$$

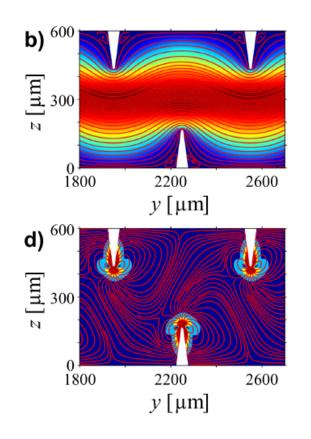
Comparison with Experiments

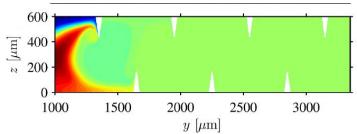
ACOUSTICS OFF



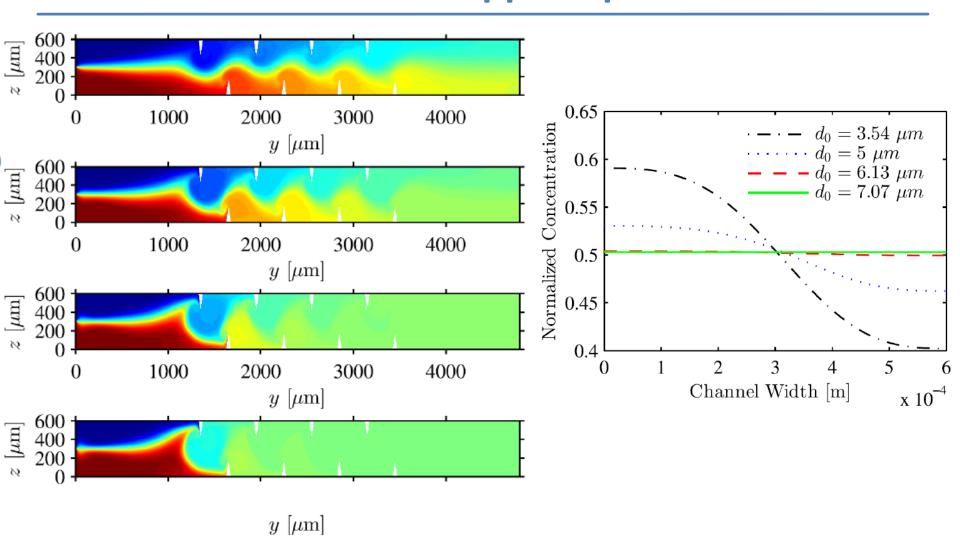
ACOUSTICS ON





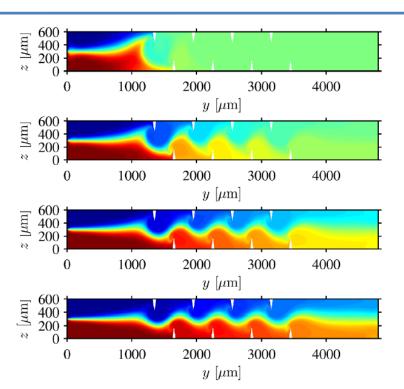


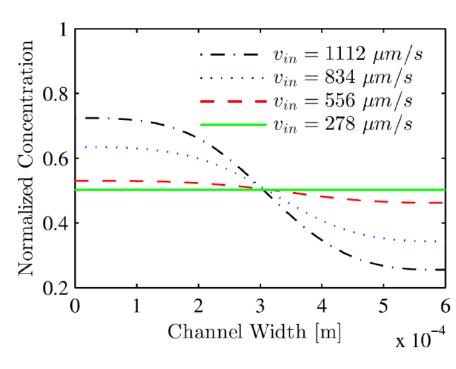
Effect of the applied power



 High power => Faster mixing length => Ability to increase throughput for a desired mixing length

Effect of the inlet velocity





Second-Order Equations

$$\left\langle \frac{\partial \rho_2}{\partial t} \right\rangle + \nabla \cdot (\langle \rho_0 \mathbf{v}_2 \rangle + \langle \rho_2 \mathbf{v}_0 \rangle) = -\nabla \cdot \langle \rho_1 \mathbf{v}_1 \rangle,$$

$$\left\langle \rho_0 \frac{\partial \mathbf{v}_2}{\partial t} \right\rangle + \left\langle \rho_2 \frac{\partial \mathbf{v}_0}{\partial t} \right\rangle + \left\langle \rho_1 \frac{\partial \mathbf{v}_1}{\partial t} \right\rangle + \left\langle \rho_0 \mathbf{v}_1 \cdot \nabla \mathbf{v}_1 \right\rangle$$

$$+ \left\langle \rho_0 \mathbf{v}_0 \cdot \nabla \mathbf{v}_2 \right\rangle + \left\langle \rho_0 \mathbf{v}_2 \cdot \nabla \mathbf{v}_0 \right\rangle + \left\langle \rho_1 \mathbf{v}_0 \cdot \nabla \mathbf{v}_1 \right\rangle$$

$$+ \left\langle \rho_1 \mathbf{v}_1 \cdot \nabla \mathbf{v}_0 \right\rangle + \left\langle \rho_2 \mathbf{v}_0 \cdot \nabla \mathbf{v}_0 \right\rangle$$

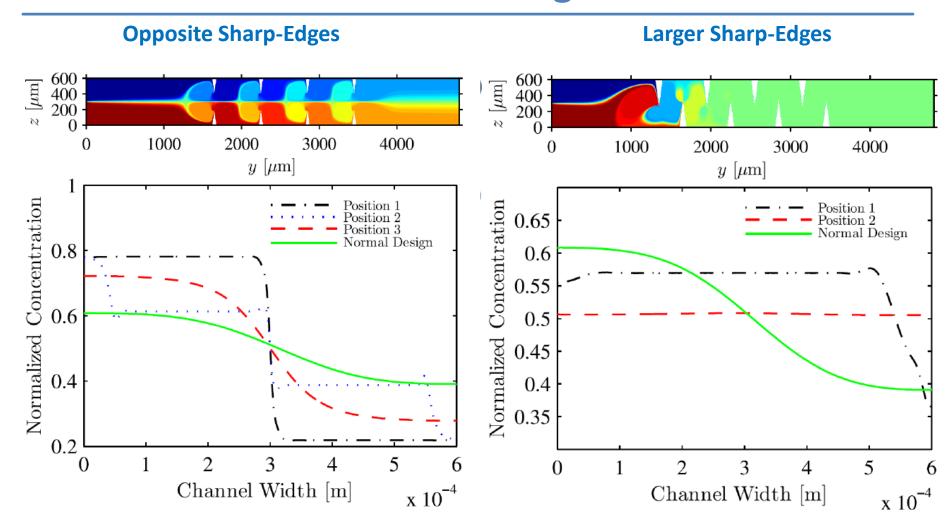
$$= -\nabla \left\langle \rho_2 \right\rangle + \mu \nabla^2 \left\langle \mathbf{v}_2 \right\rangle + (\mu_b + \frac{1}{3}\mu) \nabla (\nabla \cdot \langle \mathbf{v}_2 \rangle)$$

Effective convection velocity

$$\mathbf{v}^{\mathrm{C}} = \mathbf{v}_0 + \mathbf{v}^{\mathrm{L}}$$

 A change in inlet velocity has an effect on both the background flow as well as the streaming flow (due to some time-averaged terms containing inlet velocity).

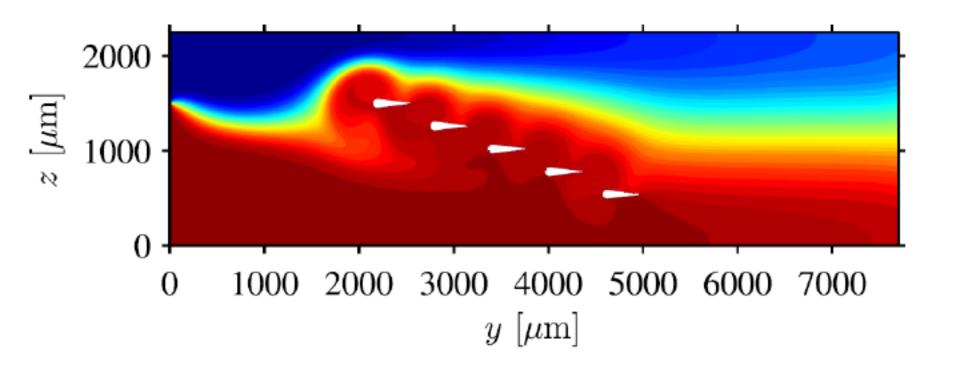
Different Designs



Streaming from the opposite edges suppresses each other.

Larger edges effectively perturbs both the incoming streams.

Concentration gradient



- ➤ The gradient profile can be spatially controlled by changing the arrangement of the sharp-edged structures.
- ➤ The gradient profile can be temporally controlled by tuning the inlet velocity or/and the applied power.
- Useful for studying temporal dynamics of cells in a chemical environment.

Conclusion and Outlook

- A numerical model for sharp-edge based mixing is presented with good qualitatively comparison with the experiments.
- The effects of operational and geometrical parameters was investigated.
- The exact displacement profile at the walls need to be further investigated.
- Quantitative 3D Astigmatism Particle Tracking Velocimetry (APTV) measurements for the experimental verification are in progress.

Acknowledgments

Po-Hsun Huang

Tony Jun Huang

Francesco Costanzo

