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An axially-symmetric model is chosen for electric field
PMT Ay (SRR EREE Dual-Phase TPC computation. Electrons are then traced through the
* Particle interaction generates field to examine the performance and acceptance of
direct scintillation light (S1) the GPM. A mesh refinement is performed utilizing
and electrons trajectory convergence.
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WIMPs will interact via nuclear recoils. The S1/S2 ratio A B
distinguishes nuclear recoils from electron recoils. High Figure 3. (A) Components of Simulation

transparency to charge is crucial to measuring an Georr_lgtry (B) Electrostatic Boundary
Conditions
accurate S2.
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What Is a Gas Purity Monitor (GPM)? s ie R
To measure the charge transparency of Xe, electrons o0l ———— I ER .5 |§’
are produced, drifted through gaseous Xe, and o L e
collected. Understanding electron drift in Xe gas is Figure 4. Equipotential Figure 5. Electron
crucial to developing a functional and efficient gas Lines of Electric Field Trajectories Through
purity monitor. Full GPM
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Results
— Simulating the electric field and electron trajectories
(1 allows the tuning of GPM components to avoid

\ charge build-up and optimize performance.
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Figure 2. Gas Purity Monitor Design

Design Features:
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Figure 6. (A) Charge Build-up on Field Shaping
Tube (B) Well Behaved Electrons in the High
Field Region (C) Electrons Ejected Behind the
Photocathode (D) Well Behaved Electrons Near
the Photocathode





