A Lesson in Cartilage Therapy: Do Chondrocytes Utilize Mechanical Energy from Exercise for Cell Maintenance and Growth?

A. Miller¹, A. Chama², T. Louw², A. Subramanian¹, H. Viljoen¹

1. University of Nebraska - Lincoln, Department of Chemical and Biomolecular Engineering, Lincoln, NE, USA 2. Stellenbosch University, Department of Chemical Engineering, South Africa

Figure 1. Effect of chondrocytes stimulation by exercise

Connecting impact to ultrasound:

- 2. Only at resonance does mechanical energy couple into nucleus storing 2x more than in cytoplasm.
- 3. Impact causes periods of high mechanical energy density in nucleus.

Figure 2. Effect of chondrocyte stimulation by US

Linking mechanical energy in nucleus to cell proliferation:

Experiments showed optimum expression of c-series genes at 5 MHz³

Model cAMP/PKA/ERK Pathway

Postulate I: US increases pERK transport rates to/from nucleus

Result: Model does not support experiments.

Postulate II: Mechanical energy in nucleus strains chromatin and increases $k_1 = k_0 e^{-(f-f_r)^2}$

 $ELKPP + SRF \stackrel{k_1,k_{-1}}{\longleftrightarrow} ELK1PP \cdot SRF \stackrel{k_2}{\to} ELK1PP \cdot SRF + cFos$

Figure 3. US effects on signaling pathway

Conclusions:

- 1. Exercise causes chondrocytes to vibrate at primary resonance.
- 2. Only at resonance does mechanical energy couple in nucleus.
- 3. In vitro expression of c-genes, stimulated at different frequencies, confirms optimal cell activity at resonance.
- 4. Combining our two postulates provides strong evidence that mechanical energy can directly affect gene expression.
- Chondrocytes benefit from exercise by linking mechanical energy to cell metabolics.

References:

- 1. http://porchiaswish.com/blog/the-profound-effects-of-daily-running-on-anxiety-levels/
- 2. http://www.nyboneandjoint.com/articles/articular-cartilage-damage/
- 3. Louw, T.M., et al. Mechanotransduction of ultrasound is frequency dependent below the cavitation threshold. Ultrasound Med Biol. 39(7):1303-19, 2013.