Analysis of Strain-induced Pockels effect in Silicon

C. L. Manganelli ¹, P. Pintus ¹, C. Bonati ², F. Di Pasquale ¹
1. Scuola Superiore Sant'Anna, via G. Moruzzi 1-Pisa;
2. INFN-Sezione di Pisa-Largo Pontecorvo 3-Pisa

Introduction: The discovered Pockels effect in strained silicon has made silicon a promising candidate material for realizing optical modulators and switches [1].

Fig. 1. MZI cross section designed for Pockels effect analysis [1].

Theory: We assume that $\chi^{(2)}$ is local function of ϵ and develop in Taylor series

$$\chi_{ijk}^{(2)} = \frac{\partial \chi_{ijk}^{(2)}}{\partial \zeta_{\alpha\beta\gamma}} \bigg|_{\varepsilon=0} \zeta_{\alpha\beta\gamma}$$

where $\zeta_{\alpha\beta\gamma} = \partial \varepsilon_{\alpha\beta}/\partial x_{\gamma}$ is the strain gradient tensor. The final expression for the effective dielectric susceptibility is given by

$$\chi_{v}^{eff}(\omega) = c_i o_i(\omega)$$

where $o_i(\omega)$ are combination of the weighted strain gradients.

USE of COMSOL Multiphysics: The strain profiles are computed taking into account the orthotropic model in ref [3] and the waveguide show a single mode behaviour.

Fig. 2. Strain profiles for the cross section of ref [1] computed by taking into account ref. [3]

Fig. 3. The mode analysis for the waveguide cross section in ref. [1]

Results and conclusions: From the combination of the mode analysis and the mechanical deformation we obtained the values of the overlap integrals. Future experimental data will give the possibility of evaluating the c_i coefficients

Fig. 4. Overlap integrals for the waveguide cross section as function of the waveguide width ref. [1]

References:

- 1. B. Chmielak, et al., "Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides," *Opt. Express*, **21**, (2013).
- 2. B. Chmielak et al., "Pockels effect based fully integrated, strained silicon electro-optic modulator," *Opt. Express*, **19**, (2011)
- 3. M. A. Hopcroft et al. "What is the Young's modulus of silicon?," *IEEE Journal of Microelectromechanical Systems*, **19**, (2010).