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Abstract: In this paper, the parametric simulation
of an acoustic transducer is presented. The
modeling and analysis in COMSOL Multiphysics
5.0, shows the optimal configuration for the
largest displacement of the membrane with the
proposed material layers used. The Piezoelectric
module was used to simulate the deflection of the
membrane with an applied voltage. For this work,
we varied the size of the piezoelectric material
tri-layer (Pt/PZT/Pt) diameter and the hole where
the membrane is clamped. The results show the
optimal parameter to be used as the ratio between
the PZT diameter and the total diameter of the
membrane.
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1. Introduction

Electronic systems have been continuously
growing to a point that they play an important
role in an average user. The demand of quality
in the electronics industry products, requires the
development of new components with better char-
acteristics [1, 2]. Devices such as micro-speakers,
microphones, accelerometers, gyroscopes, humid-
ity sensors, lenses, cameras, amongst others, need
better characteristics to keep up with the demand
for quality.

An interesting gap to improve audio technology
exists in one of the oldest components, the acous-
tic transducer. To improve the performance of the
sound reproduction, we could potentially elimi-
nate components that introduce noise when digital
signals are converted to analog signals. The latter
process usually occurs when reproducing sound
in commercial loudspeaker drivers. One of the

approaches we could take in order to tackle this
problem, is the development of a system that can
directly communicate from the digital audio signal
source to a digital acoustic transducer, without the
need to use a Digital-to-Analog converter (DAC).
Such a system can be achieved with the concept of
”Digital Sound Reconstruction” (DSR). The DSR
concept can be implemented with a Digital Trans-
ducer Array Loudspeaker (DTAL) that was first
proposed by Huang et al. in [3]. The device can be
used to reproduce binary pulses that can be added
together to reconstruct the analog audio signal.
Actual problems or deficiencies associated with
the current acoustic transducer, such as: frequency
response and linearity, can be attenuated with this
approach [4–6]. The DTAL can be organized by
sets of transducers that are grouped in association
with a bit-number. This configuration is refereed
as ”binary weighted group” [7]. For example, a 3-
bit micro-speaker would have three sets of acous-
tic transducers, each group would have 2n trans-
ducers (where n is the bit number). The most sig-
nificant bit (MSB), would have 4 transducers (22

transducers). The second set would have 2 trans-
ducers (21 transducers), and the least significant
bit (LSB) would have 1 transducer (20 transduc-
ers).

The DTAL device operates as follows: when a
lower pressure is needed, fewer transducers are
activated and when higher pressure is needed,
more transducers are used. Each transducer con-
tributes to a small pressure change in the system,
which is a contribution of the total sound pressure
change generated by the entire device.

The response time of an individual element
only depends on the digital clock that synchro-
nizes the audio reconstruction process. Therefore,
each individual device is independent of the re-
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constructed frequency and this enables the recon-
struction of a wide range of frequencies. As a re-
sult, each membrane is not required to operate in a
specific frequency range, in contrast to the current
design rules of loudspeakers.

In this work, we use a piezoelectric material
as the driving mechanism of our membrane, and
polyimide as the structural material. Polyimide is
a very attractive polymer for MEMS fabrication
due to its low coefficient of thermal expansion,
low film stress, lower cost than metals and semi-
conductors and high temperature stability com-
pared to other polymers [8–10]. Polyimide has
been previously used in the microelectronics in-
dustry for module packaging, flexible circuits and
as a dielectric for multi-level interconnection tech-
nology [11, 12]. Recently, the polymer has been
widely used as an elastic flexible substrate for
polymerMEMS [13–15] and also as structural ma-
terial for several devices [8, 13–27], which shows
the extent of applications of the material.

Previously, the feasibility of such structure was
reported [28, 29], but the performance was not as
expected. Due to the low performance, we at-
tempted to optimize the design of the membrane.
We used Lead Zirconate Titanate (PZT) as the
piezoelectric material with a bottom and top elec-
trode using platinum (Pt), and a layer of polyimide
as part of the structural material of the bimorph
actuator.

2. Computational Methods

The interaction of the mechanics and the electrical
fields of the studied structure is called piezoelec-
tricity. The interactions are modeled as a coupling
of the linear elasticity equations and charge re-
laxation time equations, using electric constants.
Piezoelectricity can be described mathematically
using the material’s constitutive equations [?, 30,
31]. Piezoelectric materials become electrically
polarized when they are subject to a strain. In a
microscopic perspective, the atoms displacement
when the solid is deformed causes electric dipoles
within the material. In some cases, the crystal
structures can give an average macroscopic dipole
moment or electric polarization. This effect is
known as the direct piezoelectric effect. Also its
reciprocal exist, the converse piezoelectric effect,
in which the solid contracts or expands when an
electric field is applied.

The constitutive relation between the strain and
the electric field in a piezoelectric material is
shown below (strain-charge form):

S = sET+dT E
D = dT+ εT E

(1)

Where, S is the strain, T is the stress, E is
the electric field, and D is the electric displace-
ment field. The materials parameters sE ,d and εT ,
correspond to the material compliance, the cou-
pling properties and the permittivity of the mate-
rial. These parameters are tensors of rank 4, 3 and
2 respectively. However they can be represented
as matrices within an abbreviated subscript nota-
tion, as it is more convenient to handle. In COM-
SOL Multiphysics, the Piezoelectric Devices in-
terface uses the Voigt notation, which is standard
in the literature of piezoelectricity but differs from
the defaults used in the Solid Mechanics interface.
The latter equation (1) can be expressed in the
stress-charge constitutive form, which relates the
material stresses to the electric field:

T = cES− eT E
D = dS+ εSE

(2)

The stress-charge form is usually used in the fi-
nite element method due to the useful match to
the PDEs of Gauss’ law (electric charge) and the
Navier’s equation (mechanical stress) [?]. Usually
most material’s properties are given in the strain-
charge form. The material properties, cE ,e and εT
are related to the parameters sE ,d and εT , and can
be transformed between each other by the conver-
sion equations shown below:

cE = s−1
E

e = ds−1
E

εs = ε0εrT −ds−1
E dT

(3)

2.1 Governing Equations

The Piezoelectric equations used in COMSOL,
combine the momentum equation,

ρ0
δ2u
δt2 = ∇X (FS)+FV (4)

Excerpt from the Proceedings of the 2015 COMSOL Conference in Grenoble



with the charge conservation equation of Elec-
trostatics,

∇ ·D = ρV (5)

where the ρV is the electric charge concentra-
tion. The electric field is computed from the elec-
tric potential V as:

E =−∇V (6)

In both Equations (4) and (5), the constitutive
relations of Equation (3) are used, which makes
the resulting system of equations closed. The de-
pendent variables are the structural displacement
vector u and the electric potential V [?].

3. Design and Simulation Setup

The components of the piezoelectric membrane
are: a 300nm platinum (Pt) bottom electrode, a
250nm piezoelectric layer (PZT), a 300nm Pt top
electrode and a 3µm thick polyimide structural
layer, to complete the bimorph membrane. In
Fig. 1, the first version of our membrane is shown.

Figure 1: (Left) Isometric view of a membrane
on silicon substrate (Right) Conceptual exploded
view of the first design of the micro-membrane.

As it can be seen in the image, the piezoelectric
actuator dimensions are larger than the hole area.
This is the parameter that needs to be optimized,
for a larger displacement of the membrane. In
our simulation, we used the Piezoelectric module,
whereby the structure was setup in a 2D environ-
ment. The structure was simulated as a cantilever,
which is clamped from both sides, as shown in
Fig. 2.

For the mechanical constraints the six vertical
boundaries (edges) to each side of the structure
was set to be fixed. All the other boundaries were
set to be free. For the AC/DC interface the bottom

Figure 2: Schematic of the cross-secional view of
the piezoelecric membrane.

electrode was set to be the ground, and the top
electrode was set to be a Terminal with a potential
of 10V .

A stationary study was selected and a paramet-
ric sweep was setup, to be able to change the ge-
ometry for different dimensions of the actuator.
The PZT diameter dimension (shown in Fig. 2)
will be constrained proportionally to the ratio ”a”,
as shown below in Equation 7.

PZTd = a∗Holed (7)

4. Results

The first version of the fabricated devices did not
meet the expected performance, even though the
transducers were able to reproduce sound waves.
From the COMSOL simulation results, we were
able to see that the original design was out of the
optimal range parameters for a larger membrane
displacement, see Fig. 3 and 4.

As seen above, the original design was really
out of range for large membrane displacement.
The range of displacement was in the range of
hundreds of pico-meters. In Fig. 3, a 3D view pro-
duced from a revolution of the results is shown.

Due to these results, we were able to modify
the device accordingly. In Fig. 5, a modified ver-
sion of the membrane is shown. Where the desired
PZT/Hole ratio ”a” should be between 0.8 to 0.9,
i.e. the Pt/PZT/Pt layers must have a diameter be-
tween 80%−90% of the hole diameter area.

As seen in the conceptual view of Fig. 5, the
piezoelectric stack has 4 arms. This arms will be
the interconnection with the next element in the
device array.
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Figure 3: 3D representation from a partial revo-
lution of the simulation results, showing the de-
formation of the membrane and the internal layers
(colors depict the different materials in the struc-
ture).

5. Conclusions

After analyzing the simulation results, we no-
ticed that the original parameter designs were not
optimal. New designs were developed to get a
better performance of the array of actuators. The
next steps in the project include simulations of the
acoustic energy generated by the acoustic trans-
ducers. We have fabricated and diced the chips
from a four inch silicon wafer using our in-house
dicing method [32]. An interesting characteristic
that we will also consider, is the directivity of the
beam forming pattern, which is an inherit charac-
teristic of the final transducer array.

The device will work as a directional loud-
speaker, either using the Digital Sound Recon-
struction concept or by signal modulation using an

Figure 4: Displacement vs Diameter to Hole Ratio
of the acoustic transducer.

Figure 5: Conceptual view of the new membrane
design for the Pt/PZT/Pt layer stack for optimized
membrane displacement.

ultrasonic signal, which contains the audible sig-
nal. This characteristic, has great potential for a
wide range of applications for our MEMS micro-
loudspeaker, such as: separate multi-user inten-
sity and signal control of the audio source, pri-
vate audio, medicine, underwater communication,
to name but a few.
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