Virtual Modelling of Thermo-Physiological Comfort in Clothing

Peter Van Ransbeeck^{1*}, Robin Benoot¹, Benjamin Van Der Smissen¹, Alexandra De Raeve², Simona Vasile², Joris Cools² and Mathias Vermeulen¹ 1. University College Ghent, Department of Mechatronics, Valentin Vaerwyckweg 1, BE-9000 Ghent 2. University College Ghent, Department of Fashion, Textile and Wood, Buchtenstraat 11, BE-9051 St-D-Westrem *contact person: peter.vanransbeeck@hogent.be

Introduction

The dynamic heat and moisture transmission characteristics of clothing are extremely important phenomena that control the thermo-physiological comfort of a person [ref. 1-3]. Heat and moisture absorption in

Computational Methods

the COMSOL model accounts for vapor-phase diffusion, heat transfer, liquid evaporation/condensation and sorption/desorption through the solid phase (table 1). Complications due to variable porosity caused by swelling/shrinkage of the porous matrix are accounted for by the source terms in the transport equations [ref. 1 & 3].

Figure 1. Coupled mass/heat transport in hygroscopic textile

Equation	Transient	Diffusion	Volume Source	Interface
mass conservation vapor	X	X	mass flux in/out fibre	PDE
mass conservation bound liquid	X	-	mass flux in/out fibre	PDE
energy conservation	X	X	heat flux (evaporization/condensation + sorption/desorption)	heat transfer in porous media

 Table 1. Comsol model

Results Temperature rise/fall across a wool textile due to heat/vapor transmission.

r (s)

Figure 2. Contourplot temperature rise/fall

Figure 4. Contourplot bound liquid volume fraction

Test case A wool fabric is subjected to a step change in relative humidity [ref. 1]:

Conclusions Coupled diffusion phenomena of heat and moisture in hygroscopic materials are successfully modeled. More fabrics and validation is underway.

HOGENt

 $\begin{array}{l} h_{m}, h_{c} \\ T_{air} = 20 \ ^{\circ} \ C \\ RH_{air} = 100 \ \% \\ (\text{step change @ t=0s)} \end{array}$

 h_m = convective mass transfer coefficient = 0.021 m/s h_c = convective heat transfer coefficient = 21.8 W/(m²K)

Figure 5. Definition test case

References

- 1. Gibson, P., Charmchi, M., The Use of Volume-Averaging Techniques to Predict Temperature Transients Due to Water Vapor Sorption in Hygroscopic Porous Polymer Materials, Journal of Applied Polymer Science, 64, 493-505 (1997)
- 2. Soraia F. Neves, João B. L. M Campos, Tiago S. Mayor: Numerical simulation study on the heat and mass transfer through multi-layer textile assemblies, COMSOL Multiphysics Conference Milan (2012)
- 3. Seth Allen Pemberton: A Novel Approach to Multiphysics Modeling of Heat and Mass Transfer in Porous Media, masterthesis University of Tennessee (2013)

Excerpt from the Proceedings of the 2015 COMSOL Conference in Grenoble