

that predicts, optimizes and innovates

Electrical Modeling of Molten Salt Electro-Refining Processes

Alexandre OURY <u>alexandre.oury@simtecsolution.fr</u> 00 33 (0) 9 53 51 45 60 COMSOL CONFERENCE 2015 GRENOBLE

that predicts, optimizes and innovates

SIMTEC, <u>www.simtecsolution.fr</u>

- French company, founded in 2006, 4 Ph. D. Engineers
- Expert in Modeling, COMSOL Certified Consultants :
 - CFD
 - Structural mechanics
 - Electromagnetism
 - Heat transfer
 - Chemical engineering
- Services:
 - Numerical modeling
 - Custom-made training session
 - Modeling Assistance
- Main Clients:

that predicts, optimizes and innovates

Content

1. Introduction: about molten salt electrorefining

2. Electrical model implementations

- 2.1. Primary current model
- 2.2. Secondary current model

3. Results

- 3.1. Primary vs. secondary approach
- 3.2. Influence of the prescribed current

Numerical modeling

- 1. Introduction: about molten salt electrorefining
- Principle

Numerical modeling

that predicts, optimizes and innovates

- 1. Introduction: about molten salt electrorefining
- Modeling of electrorefining processes: what for?
- Prediction of the local **reaction rates** at the electrodes:

Presence of preferential active zones? of undesirable side reactions?

 Prediction of the temperature throughout the reactor/in the electrolyte, as a function of the Current/Voltage specifications

→ Optimizing: cell design, operating conditions (current, voltage), electrolyte composition...

- 1. Introduction: about molten salt electrorefining
- Modeling of electrorefining processes: physical interactions

- 1. Introduction: about molten salt electrorefining
- Modeling of electrorefining processes: physical interactions

Numerical modeling

that predicts, optimizes and innovates

2. Electrical model implementations

The 3 current approaches

- 2. Electrical model implementations
- The primary current distribution

that predicts, optimizes and innovates

2. Electrical model implementations

The secondary current distribution

Cathodic process (fast): $i_{0,C} = 1 A/cm^2$

Anodic process (slow): $i_{0,A} = 0.001 \ A/cm^2$

Numerical modeling

that predicts, optimizes and innovates

2. Electrical model implementations

Model geometry

Mesh details

that predicts, optimizes and innovates

3. Results

• Primary vs. secondary current density

Secondary distribution (A/cm²)

EIMTEC

Numerical modeling

that predicts, optimizes and innovates

3. Results

• Primary vs. secondary current density

Current model	Decomposition voltage (V)	Ohmic drops (V)	Activation overpotentials η (V)	Overall cell voltage (V)
Primary distribution	1.7	6.3	0	8
Secondary distribution	1.7	6.5	1.5 (anodic) + 0.6 (cathodic)	10.3

Numerical modeling

- 3. Results
- Effect of the current prescribed (secondary model)

Numerical modeling

that predicts, optimizes and innovates

4. Conclusion

- 2 simple current models for describing electro-refining cells: **primary** or **secondary** approaches
- Primary current: only Ohmic drops

Secondary current: activation overpotentials of reaction taken into account

- More uniform reaction rate distribution obtained with the secondary approach
- Increase of the total current applied to the cell \rightarrow heterogeneization of the current distribution
- Secondary model \rightarrow more appropriate for simulating electro-refining processes.

 \rightarrow simple tool for optimizing the electrode design, the applied current...

that predicts, optimizes and innovates

Thanks for your attention ...and your questions!

Alexandre OURY <u>alexandre.oury@simtecsolution.fr</u> 00 33 (0) 9 53 51 45 60