

Residual stress in Silicon membranes of circular CMUT

A. T. Galisultanov, P. Le Moal, V. Walter, G. Bourbon

Department of Applied Mechanics

FEMTO-ST institute, Besançon, France

E-mail: ayrat.galisultanov@femto-st.fr

COMSOL CONFERENCE 2015 GRENOBLE

utbm

Outline

✤ Introduction

- Key parameters
- Fabrication of CMUT
- Experimental results
- Comsol model
- Results
- Conclusions

SEM image of cavity and bottom electrode of a single CMUT

Introduction

What is CMUT?

Capacitive Micromachined Ultrasound Transducer Energy converters from electrical to mechanical domain and vice versa

Why CMUT?

Wide bandwidth Compatibility with standard CMOS processes

Application

Ultrasound Imaging System (liquid, tissue) Flow sensors (air)

Structural Health Monitoring (solid)

Key parameters

Electrostatic force

$$F_E = \frac{1}{2} \frac{C(x)}{d_{eff} - x} V^2, \quad C(x) = \frac{\varepsilon \varepsilon_0 S}{d_{eff} - x}, \quad V = V_{DC} + V_{AC};$$

Electrostatic softening effect: elastic restoring force

$$k = k_m + k_e = k_m - \frac{C(x)}{(d_{eff} - x)^2} V^2$$

Pull-In Voltage

 $V_{PI}: k_m + k_e = 0$

Electromechanical coupling

$$k_T^2 = \frac{2x}{d_{eff} - x + (d_{eff} - 3x)\frac{C_p}{C(x)}}$$

Eigenfrequency

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k_m + k_e}{m}}$$

Bandwidth

$$\frac{\Delta f}{f_0} = \frac{f_2 - f_2}{f_0}$$

Schematic cross-section of CMUT structure

Fabrication of CMUT

Fabrication approach:

- Sacrificial release process
- Wafer bonding technique

Radius of CMUT R: **50**, **70**, **100**, **150** um Radius of the bottom electrode: **0,8*R** Gap: **1,1** um Thickness of Silicon, (100) plane : **1,5** um; Thickness of Al: **0,22** um;

Residual stress appears due to fabrication steps process:

- SOI wafer with prestressed Si layer;
- anodic wafer bonding;
- Al deposition.

Experimental results

Radius, um	Maximum static deflection, nm	Eigenfrequency, MHz (FEM)	Eigenfrequency*, MHz (exp.)
50	142	2,28	2,3
70	360	1,18	1,26
100	650	0,58	0,82
150	1500	0,26	0,6

*in air

Typical static deflection after fabrication (R=100 um)

Static deflection

residual stress

Eigenfrequency

residual stress

air spring effect

Cross sectional view of CMUT cell with applied mechanical and electrical boundary conditions

Types of studies:

-Stationary study (deflection, pull-in voltage)

-The Prestressed Analysis, Eigenfrequency study (deflection, eigenfrequency)

-The Prestressed Analysis, Frequency Domain (deflection, bandwidth, coupling)

Air spring effect

 $m\ddot{y} + c_d\dot{y} + (k_0 + k_e)y = F_0\sin(\omega t)$

 k_{ρ} - the coefficient of viscous damping force, c_d - the coefficient of elastic damping force

Dependences of the viscous and the elastic damping forces of CMUTs on the squeeze number. The membrane plate is assumed to be a square.*

FEM model

Grey area - Solid Mechanics Blue area - Pressure Acoustics, Linear elastic fluid model ($k_e = \frac{P_a A}{h_o}$, $c_d = 0$)

*Lee, S. M., Cha, B. S., & Okuyama, M. (2011). Viscous Damping Effect on the CMUT Device in Air. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 58(4), 747-755.

Residual stress calculation

Radius, um	Maximal static deflection, nm 142 360	
50		
70		
100	650	
150	1500	

R, um	S ₀ , MPa (defl)	Eigenfrequency, MHz (FEM)	Eigenfrequency ¹ , MHz (FEM)	Eigenfrequency, MHz (exp.)
50	63,5	2,28	2,31	2,3
70	86,0	1,18	1,29	1,26
100	76,5	0,58	0,88	0,82
150	78,7	0,26	0,65	0,6

¹ with considering air spring effect and geometric nonlinearity

Results

Vertical displacement of CMUT membrane for different dc bias voltage (S_0 =75MPa, R=50um)

Results

Coupling factor

$$k_T^2 = 1 - \left(\frac{f_Y}{f_R}\right)^2$$

f_Y - resonance frequency
f_R - antiresonance frequency

Resonance and antiresonance frequencies vs biased voltage $(S_0=75MPa, R=50um)$

Conclusions

- > We used COMSOL Multiphysics MEMS module to obtain the value of bending stress with parametric sweep. The average value of amplitude of bending stress is 75 MPa
- COMSOL provides better understanding of static and dynamic behavior of CMUT (air spring effect, pull in voltage, capacitance, coupling)
- > The calculated results are in a good agreement with experimental data

Future plans and final goal

- Test of CMUTs in vacuum chamber
- Developing approach for application of CMUT in structural health monitoring

Thank you!

This work has been supported by the Labex ACTION project (contract "ANR-11-LABX-01-01), the French RENATECH network and its FEMTO-ST technological facility

