Design and Implementation of Multichannel Piezoelectric Acoustic Sensor
 R. Hallikar ${ }^{1}$, S. Munshi ${ }^{1}$, M. U. Kumari ${ }^{1}$, K. Padmaraju ${ }^{2}$
 1. R. V. College of Engineering, Department of ECE, Bengaluru, Karnataka, India 2. JNTU Kakinada, Kakinada, Andhra Pradesh, India

Introduction:

This work concentrates on developing a selfcontained cochlea whose performance is at par with natural hearing.

- The Artificial Basilar Membrane (ABM) design is done in such a manner so as to get a performance similar to the natural hearing.

[^0] implant and placement of electrodes.

Figure 3. Use of COMSOL to generate ABM model

Table 1: Relative error for various frequencies

Table 1. Relative error for different frequencies

Results:

Use of COMSOL Multiphysics to generate ABM model.

Figure 4. Displacement versus frequency at 3000 Hz

Table 2:Comparative Analysis of performance of PVDF amd PZT

Figure 5.Comparative Analysis of performance of PVDF and PZT

Conclusions: Tables 1 and 2 gives us assessment of the performance of the two materials and it can be concluded that PVDF is better material to be uses in ABM construction compared to PZT 5A and as frequency increases the maximum displacement at the point of resonance shifts from apex to base of ABM. Relative error between theoretical and the simulation results varies between +/-5\% approximately.

References:

1. N.S.Lawand,Joost Van Driel and P.J.French, Electric Field Density Distribution for Cochlear Implant Elecctrodes, Delft University of ,technology, January (2012)
2. Youngdo Jung, Jun-Hyuk Kwak, Young Hwa Lee, Wan Doo Kim and dShin Hur, Development of a multi-channel piexoelectric Acoustic Sensor Based on an Artificial Basilar Membrane,Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials (2014)

[^0]: Figures for basic model for cochlear

