Design and Implementation of Multichannel Piezoelectric Acoustic Sensor

R. Hallikar¹, S. Munshi¹, M. U. Kumari¹, K. Padmaraju²
1. R. V. College of Engineering, Department of ECE, Bengaluru, Karnataka, India
2. JNTU Kakinada, Kakinada, Andhra Pradesh, India

Introduction:

This work concentrates on developing a selfcontained cochlea whose performance is at par with natural hearing.

• The Artificial Basilar Membrane (ABM) design is done in such a manner so as to get a performance similar to the natural hearing.

Figure 1 and 2. Basic Model for cochlear Implant and Placement of electrodes

Design Equations for computing number of electrodes:

Where,

L= Length of ABM

L₁= Length of each electrode

D= Distance between two electrode

W=Width of the electrode

N= Number of electrode

T= Thickness of ABM

 T_1 = Thickness of each electrode.

Also following assumptions are made,

L=28mm

D=700um

 $L_1 = 500 um$

Results:

Figure 3. Use of COMSOL to generate ABM model

Figure 4. Displacement versus frequency at 3000Hz

Table 1: Relative error for various frequencies

Frequen-	Displac-	Displac-	Relative
cy in Hz	ement in mm	ement in ının	eiror in %
	Theoret	Simulated	
	-ical	results	
	results		
2000	11.968	11.50	+4.0706
3000	16.2656	16.80	-3.18045
4000	19.5745	20.40	-4.04649

Table 2:Comparative Analysis of performance of PVDF amd PZT

Frequency	Distance from Apex in mm			
(КНz)	Natural Basilar Membrane	PVDF	PZT	
1	18.1284	23.5	23.38	
2	12.804	18.23	23.27	
3	9.962	11.97	21.13	
4	8.1408	9.87	17.69	
5	6.7952	7.7	16.64	
6	5.728	8.1	14.56	

Table 1. Relative error for different frequencies

Figure 5. Comparative
Analysis of performance of
PVDF and PZT

Conclusions: Tables 1 and 2 gives us assessment of the performance of the two materials and it can be concluded that PVDF is better material to be uses in ABM construction compared to PZT 5A and as frequency increases the maximum displacement at the point of resonance shifts from apex to base of ABM. Relative error between theoretical and the simulation results varies between +/-5% approximately.

References:

- N.S.Lawand, Joost Van Driel and P.J. French, Electric Field Density Distribution for Cochlear Implant Elecctrodes, Delft University of ,technology, January (2012)
- 2. Youngdo Jung, Jun-Hyuk Kwak, Young Hwa Lee, Wan Doo Kim and dShin Hur, Development of a multi-channel piexoelectric Acoustic Sensor Based on an Artificial Basilar Membrane, Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials (2014)