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Abstract: Microelectromechanical coupled 

resonating arrays are being used for detecting 

biological and chemical analytes through mass 

sensing. Such arrays of perfectly identical 

resonators can be considered as periodic, 

ordered, non-localized systems. The change in 

the eigen parameters of the system upon mass or 

stiffness perturbation is a measure of the amount 

of perturbation. An attempt has been made in 

this article to investigate the dependence of mass 

sensitivity on the number of resonators in the 

system and whether it depends on the resonator 

which is perturbed and the eigenfrequency which 

is observed. Its dependence on the coupling 

strength was also observed. Using first order 

perturbation techniques, an approximate 

expression for eigenvalue sensitivity values was 

derived. Based on this expression, the authors 

predict an optimal configuration to be used for 

mass sensing. In the end it was observed that the 

eigenvector sensitivity values for weakly coupled 

resonating arrays far surpass the eigenvalue 

sensitivity values for strongly coupled resonating 

arrays. All numerical results were subsequently 

verified by performing FEM analysis in 

COMSOL Multiphysics.  
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1. Introduction 
 

Recently, there has been considerable interest 

in the use of micro- and nanoscale structures as 

sensing devices. The research has especially 

focused on micro- and nano-cantilevers and their 

arrays. Due to their small size, these devices 

have increased resonance frequencies and an 

increased sensitivity to external inputs or 

changes in the system. The superiority of 

dynamic devices such as micro- and nano-

resonators over static devices has already been 

established. Such resonating devices have found 

applications as pressure sensors, mass sensors, 

charge sensors, force sensors etc. These devices 

either measure the change in resonance 

frequency [1] or the change in mode shapes [2] 

upon perturbation. This change is a direct 

measure of the level of perturbation.  

Some researchers have successfully used 

coupled resonating arrays (CRAs) as sensing 

devices. Most of these techniques involve 

perturbing one of the resonators and sensing the 

change in the system resonance frequency. A 

pre-condition to this approach is that 

perturbation of a single element must result in 

significant change in the system resonance 

frequency. This is possible when eigenmodes are 

fully localized, such that each mode shape is 

dominated by the motion of a single array 

element. The changes in other modes of the 

system are negligible only if the inter-coupling 

strength is sufficiently small. However, we 

consider the case of non-localized (or at least 

incompletely localized) CRA with strong inter-

coupling, as this offers distinct advantages as far 

as eigenvalue sensitivity is concerned. Some 

techniques also focus on observing the change in 

eigenmodes of a weakly coupled array, which is 

initially non-localized.  

The current research focuses on increasing 

the sensitivity of these devices. Davis et al. [3] 

showed that nanocantilevers based on aluminum 

had higher potential mass sensitivity than silicon 

nanocantilevers, when used as dynamic sensors. 

Sharos et al. [4] showed that mass sensitivities of 

the torsional and lateral mode frequencies are an 

order of magnitude greater, and their Q factors 

significantly higher, than that of the 

conventionally used fundamental bending mode. 

Spletzer et al. [2] suggests that observing the 

relative changes in mode shapes of weakly 

coupled resonating arrays may prove to be more 

beneficial than observing the eigenfrequencies. 

Zhao et al. [5] reported a 3DOF resonator array 

used as a stiffness sensing device with the 

change in modal amplitude ratio being used as 

the output sensing parameter. He claimed an 

increased sensitivity (49 times increase) in the 
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stiffness sensitivity compared to existing state-

of-art 2DOF resonator arrays.  

This article tries to answer some fundamental 

questions. For instance, an increase or decrease 

in the mass of one array element results in a 

change in all natural frequencies and mode 

shapes of the system. However, which of the 

array element should be perturbed with mass and 

which of these frequencies should be observed in 

order to detect the mass is the question. Another 

question which might strike the reader is, 

whether there are an optimal number of elements 

to be used in the array. The authors also 

investigate the dependence of eigenvalue and 

eigenvector sensitivity values on inter-coupling 

strength.  

The article begins with a theoretical model of 

the multi-DOF (degree-of-freedom) resonator 

model. Numerical simulation results are 

presented next. Finite element method (FEM) 

simulations were performed in COMSOL 

Multiphysics and the results for the same are 

presented in the next section.  

 

2. Mathematical Model 

 

A coupled resonating system can be modeled 

as a mass-spring-damper system. However, the 

mass used in the model is not the actual mass of 

the resonator, but the dynamic, effective mass of 

the resonator. For instance, the effective mass of 

each resonator in case of coupled resonating 

cantilevers is usually taken to be 1/4
th

 of the 

actual mass of the cantilever resonator. Mass-

spring-damper representation of a 2-DoF CRA is 

shown in figure 1. 1k  represents the effective 

stiffness of the first resonator and 2k  represents 

the effective stiffness of the second resonator. ck  

represents the stiffness of the coupling beam.  

We consider a system which is identical. This 

means that the effective mass, effective stiffness 

of all resonators in the array is same. Further, the 

effective stiffness of all coupling elements in the 

system is also same. Thus,  

 

1 2

1 2

k k k

m m m

 

   

 
In our hypothesis, we have considered the 

damping to be negligible. Hence, the damping 

coefficients are considered to be zero. However, 

this may not be always true. For instance, 

squeeze film damping may be a major problem 

in some cases.  For a multi-DOF system,  

 

1 2 ...c c ck k k  
 

 

Coupling coefficient is defined as the ratio of 

stiffness of the coupling element to the stiffness 

of the resonating element. It is thus non-

dimensional in nature.  

 

ck

k
                                                           (1) 

 

 
Figure 1. Mass-spring-damper representation of a 

2DOF coupled resonating array 

 

The vibratory motion of the CRA can be 

modeled as an eigen problem.  In practice, the 

vibrations would be forced vibrations. The 

resonators would be electrostatically actuated by 

an AC voltage of the same frequency as the 

natural frequency of the structure. However, here 

the eigen analysis has been performed for free 

vibrations of the CRA. For a CRA consisting of 

n identical resonators, equations of motion may 

be written as: 

 

1 1 1 1 2

2 2 2 2 1 2 3

1 1 1 1 2 1

1

( ) 0

( ) ( ) 0

.

.

( ) ( ) 0

( ) 0

c

c c

n n n c n n c n n

n n n c n n

m x kx k x x

m x kx k x x k x x

m x kx k x x k x x

m x kx k x x

     



   

     

     

   

 

Excerpt from the Proceedings of the 2015 COMSOL Conference in Pune



 

Employing a harmonic solution of the form 

sinn nx X t , these differential equations can 

be reduced to the following eigenvalue problem, 

 

[ ]{ } [ ]{ }K X M X
                                         (2)

 

 

Here, M denotes the effective mass matrix.  

 

[ ] ( , ,...., )M diag m m m                   (3) 

 

Also, K denotes the tri-diagonal stiffness matrix.  

 

. 0

2 0

. . . .

0 0

c c

c c c

c c

k k k

k k k k
K

k k k

  
 
  

 
 
 

  

     (4) 

 
2

n   are defined as the eigenvalues of the 

system and { }X are defined as the corresponding 

eigenvectors. n  itself is known as the 

fundamental frequency of the system and is 

given by the following expression: 

 

n

k

m
                             (5) 

 

Thus, the multi-resonator vibration is 

characterized by a set of n eigenvalues, 

, ( 1,2,..., )r r n 
 

and n eigenvectors 

{ } , 1,2,...,rX r n . The set of eigenvalues form a 

spectrum, and it can be shown that: 

 

(1 4 )c

r

kk k

m m k
  

                                       (6)

 

 

To study eigenspectrum characteristics and its 

dependence on resonator parameters, the 

eigenvalue problem is normalized as:  

 

1 . 0

1 2 0
{ } [ ]{ }

. . . .

0 0 1

I

 

  
  

 

  
 
  

  
 
 

  

      (7) 

Here, 
m

k
   is the non-dimensional 

eigenvalue. As stated before,   is a measure of 

inter-coupling strength. 0.1  can be 

considered as weak coupling and 0.1   can be 

categorized as strong coupling. A coupled 

resonating array is a periodic ordered system. 

Disorder can be introduced in this ordered 

system either as a perturbation in mass or a 

perturbation in stiffness. We consider 

perturbation in mass here. The above eigen 

analysis was for an unperturbed system.  

Suppose a mass, m (say of a bio-molecule) is 

added to one of the array elements. The 

eigenvalues of the system will now change. If the 

k
th

 resonator is perturbed and the i
th

 eigenvalue is 

observed, the corresponding eigenvalue 

sensitivity is defined as:   

 

1 i i

ki

k i

s
 

 


                                                 (8) 

 

Here, i is the new system eigenvalue. We 

define another parameter   as,  

 

m

m



  

 

The eigenvalue problem after mass perturbation 

is shown below. It is assumed that the mass has 

been added to the last array element. As you can 

notice, the symmetry of the problem has broken 

due to the added mass.  

 

1 . 0 1 0 0 0

1 2 0 0 1 0 0
{ } { }

. . . . 0 0 . .

0 0 1 0 0 . 1

 

  
  

  

    
   
  

   
   
   

     

 

We can expand the modified eigenvalues as a 

perturbation expansion of  [6,7]. Assuming 

 to be very small, we can neglect the higher 

order terms of this expansion. It has also been 

assumed that eigenvectors of the system do not 

change by a large factor upon being perturbed by 

a small mass element. Thus we arrive at the 

following expression.  

 

Excerpt from the Proceedings of the 2015 COMSOL Conference in Pune



 

2

i i i k ki       

 

Upon rearranging the terms of the above 

expression, we arrive at the following result.  

 

21 i i

kiki
k i

s
 

 



                                        (9) 

 

If the resonating array is an n-DOF system, 

any of the n resonators may be perturbed and any 

of the n eigenvalues may be measured. This 

gives rise to n x n possibilities, which are 

represented in an n x n eigenvalue sensitivity 

matrix. What the above expression means is that 

the eigenvalue sensitivity matrix may be 

approximated by the square of the original 

eigenvector matrix. This conclusion has another 

far-reaching consequence. We know that for a 

particular value of k, i.e. for mass addition on a 

particular resonator,  

 

2

1

1
n

ki
i




  

 

Hence, the summation of all eigenvalue 

sensitivity values for mass addition on a 

particular resonator would also be equal to a 

constant (theoretically equal to unity). In 

actuality, the constant would not equal unity 

since the expression is a theoretical 

approximation. Thus, we can conclude that, if 

the number of elements in CRA increases, the 

maximum eigenvalue sensitivity will reduce, in 

order to keep the summation constant.  

 

3. Numerical Simulation 
The CRA was modeled as a mass-spring 

system in the previous section. The eigen 

problem for the system was numerically solved 

in MATLAB and the results and the conclusions 

which were derived are presented in this section. 

Each resonator was mass perturbed and change 

in each of the n eigenvalues was found out. 

Thus, the n x n eigenvalue sensitivity matrix was 

successively populated. A theoretical eigenvalue 

sensitivity matrix was also found out, based on 

the expression derived in the previous section. 

The eigenvalue sensitivity matrix is represented 

as a gray scale checkerboard plot. The row 

number in the checker-board representation 

represents the resonator which is perturbed and 

the column number denotes the eigenvalue 

which is examined. White color represents 

highest value of sensitivity and black color 

represents the lowest value of eigenvalue 

sensitivity.  The sensitivity matrix for a 3DOF 

system has been shown in figure 2.  

 

 
Figure 2. Eigenvalue sensitivity matrix for a 3DOF 

system 

 

Figure 3. Error matrix for a 3DOF system  

 

 The theoretical eigenvalue sensitivity matrix 

has been represented in figure 2. This would be 

used in calculating the mass. This differs from 

the actual eigenvalue sensitivity matrix. Hence, 

the calculated mass would be different than the 

actual mass. The error matrix is defined as the 

relative difference between theoretical and actual 
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eigenvalues. Lower the error of the configuration 

used, more accurate is the estimate of the added 

mass. This error maybe modeled as the 

measurement noise. Hence, the selected 

configuration should have high eigenvalue 

sensitivity, which is as close to the actual 

eigenvalue sensitivity as possible. 

 The authors also varied the number of the 

elements in the array. Highest value of 

eigenvalue sensitivity was found for a single 

DOF system. However, coupling the resonator 

offers many distinct advantages. When a single 

resonator is used, actuation, mass addition, 

sensing have to be performed on that resonator 

only. This is practically cumbersome. Further, 

coupling reduces the motional impedance of the 

structure, and thus the phase noise. The next best 

sensitivity (equal to 0.67) is achieved for a 

3DOF coupled resonator array when the second 

resonator is perturbed and the third eigenvalue is 

examined. After n=3, the eigenvalue sensitivity 

goes on decreasing as the number of resonators 

in the CRA increases, as can be deduced from 

figure 4. For a given value of  , error increases 

as n increases. Hence, this proves that increasing 

the number of elements in the array offers no 

significant advantage as far as sensitivity is 

considered.  

 As   increases above 0.1, sensitivity 

increases and error decreases. As  decreases 

below 0.1, error increases. The measurement 

error can thus be said to be inversely 

proportional to  . For performing eigenvalue 

measurements, it is important that the system 

should be strongly coupled. Weak coupling of 

arrays affects the mode shapes drastically, and 

the previous assumption made by the authors 

does not hold. The measurement error was also 

found to be proportional to the added mass. 

Thus, the following relation has been derived.  

 

e



                                                              (10) 

 

The authors also investigated the change in 

eigenvectors of a weakly coupled resonating 

array on addition of mass to one of the array 

elements. For a 3DOF system, the maximum 

value of eigenvector sensitivity was found to be 

383.95. This represents an increase of three 

orders of magnitude compared to its eigenvalue 

counterpart.  

 
Figure 4. Variation of eigenvalue sensitivity with 

number of elements in the resonator array 
 

4. FEM Simulation 

 
Figure 5. Mode shape of the 3DOF array after mass 

perturbation 

 

As stated previously, the second best 

eigenvalue sensitivity was observed for the 

3DOF system for the (2,3) configuration. FEM 

analysis of a poly-Si overhang coupled cantilever 

array was performed in COMSOL Multiphysics 

for validating this. The length, width and 

Overhang 

Poly-Si Microsphere 

Poly-Si 

Resonator 
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thickness of each resonator were 

300 m ,100 m  and 10 m respectively. The 

edge to edge separation between two elements is 

250 m and the width of the overhang is 

200 m . A poly-Si microsphere weighing 1.22 

ng, was used for perturbing the array. The 

microsphere may be of any composition, since 

the main concern here is its mass. The reader 

should take note, that for the mass-spring-

damper model to be applicable, the perturbation 

should be at a single point, preferably at the tip 

of the cantilever resonator. The third eigenmode 

was considered and the second resonator was 

perturbed as shown in figure 5. As one can see, 

the mode shape is highly localized, due to the 

mass disorder introduced. Figure 6 shows the 

frequency response function of the 3DOF system 

before and after mass perturbation.  

 

 
Figure 6. Frequency response function, before and 

after mass perturbation 

 

The perturbation results in a frequency shift 

of 3584 Hz. Thus, the mass responsivity for the 

3DOF system is 338.94 fg/Hz. This experiment 

was repeated for the 2DOF system, with all 

parameters remaining the same. The frequency 

shift observed in this case was 2037 Hz, and the 

resulting mass responsivity was 596.34 fg/Hz. 

For the 4DOF array, the frequency shift was a 

mere 1355 Hz, with the mass responsivity being 

896.49 fg/Hz.   

The eigenvalue sensitivity also depends upon 

the strength of inter-element coupling. In an 

overhang coupled cantilever array, the coupling 

strength depends on the width of the overhang. 

In the case of 4DOF system, when the width of 

overhang was halved, the frequency shift 

dropped to a mere 5 Hz, from the earlier 1355 

Hz. The mass responsivity was found to be 

242.95 pg/Hz, as opposed to the earlier figure of 

896.49 fg/Hz. 

 
Figure 7. Poly-Si disk resonators, coupled at nodal 

points  
 

 Next, we consider two Poly-Si disk 

resonators, coupled together with a coupling 

beam, at nodal points. The radius of each disk is 

5 m , and the microsphere weighs 1.22 fg. The 

coupling coefficient is extremely high in this 

case, compared to the 2DOF overhang coupled 

cantilever array considered previously. Figure 7 

depicts the first eigenmode of the array, after 

mass adsorption. As one may expect, the mode 

shape is highly localized. The frequency shift 

observed on adsorption of mass is 326.9 KHz. 

Compared to the 2DOF overhang coupled 

cantilever array, the frequency shift is orders of 

magnitude higher. The mass responsivity in this 

case is found to be 3.716 zg/Hz.  

 Change in the eigenmodes can also be a 

measure of level of perturbation. It was found 

that the change in eigenmodes is more 

pronounced when the array elements are weakly 

coupled to each other. This is due to the 

resonance localization effect, observed in weakly 

coupled systems. Electrical coupling is 

comparatively weaker than mechanical coupling. 

Corner coupled square plate resonators vibrating 

in Lamé mode, are another example of 

resonators weakly coupled to each other. Figure 

8 shows two clamped-clamped poly-Si beams, 

electrically coupled to each other, through a 

minute air-gap between them. This 2DOF system 

is subjected to a potential difference of 10 V, by 

Coupling Beam 

Poly-Si Resonator 

Anchor 

Nodal Points 

Microsphere 
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means of two rigidly bound electrodes on either 

side of the resonators. Here too, a poly-Si 

microsphere was used for perturbing the system. 

The authors consider the displacement 

amplitudes of the C-C beam, as an 

approximation of eigenvectors. For one of the 

observed modes, the relative change in system 

eigenfrequency was found to be 0.000383 %, 

while the relative change in the approximated 

eigenvector was found to be 1.6064 %. Thus, the 

relative change in eigenvector of this system was 

orders of magnitude higher than the relative 

change in system eigenfrequency.  

                      

 
Figure 8. Electrically coupled C-C beams 

 

5. Conclusions 

 

The coupled resonating array was modeled as 

a mass-spring system. Based on first order 

perturbation techniques, an expression for 

eigenvalue sensitivity was derived. Based on this 

expression, the authors endeavor to predict an 

optimal configuration of the array. For a fixed 

value of coupling coefficient, eigenvalue 

sensitivity goes on decreasing, and error goes on 

increasing, with increasing number of elements 

in the array. Highest sensitivity for a 4DOF 

overhang coupled cantilever array was found to 

be comparatively lower than that for the 3DOF 

array. Apart from the number of elements in the 

array, eigenvalue sensitivity is also highly 

dependent on inter-element coupling strength. 

The eigenfrequency sensitivity of a 2DOF poly-

Si disk resonator array (having a higher value of 

coupling coefficient) is found to be orders of 

magnitude higher than the sensitivity of a 2DOF 

overhang coupled cantilever array. The change in 

eigenvectors may also be examined, in order to 

gauge the level of perturbation. It is found that 

the relative change in eigenvector is many times 

higher than the relative change in the system 

eigenfrequency for a 2DOF system of 

electrically coupled C-C beams. All numerical 

simulations were performed in MATLAB, which 

were then substantiated by FEM simulations, 

performed in COMSOL Multiphysics.  

In future, the authors would like to extend 

these ideas for stiffness sensing. In addition, the 

authors would like to fabricate these devices 

using 2D materials such as transition metal 

dichalcogenides which have unique mechanical 

properties.  
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