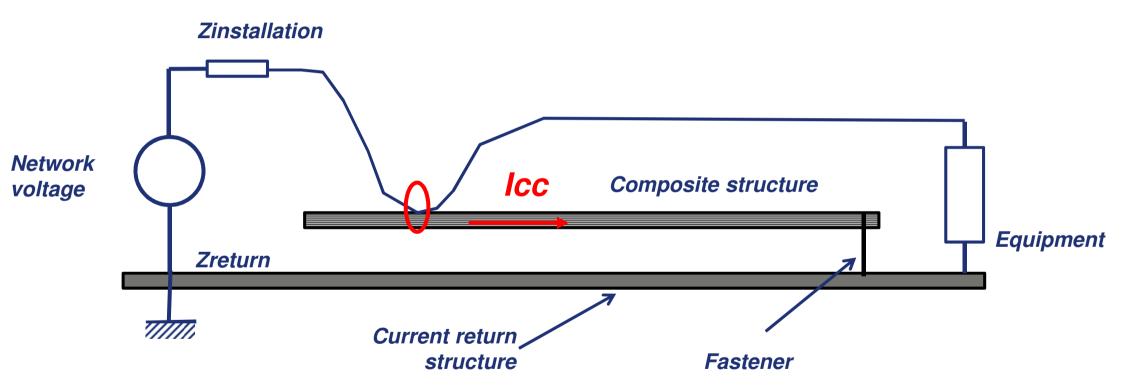


A DISCUSSION TO MODEL EXOTHERMIC REACTIONS AND IRREVERSIBLE VARIATIONS OF ELECTRICAL CONDUCTIVITY

Jean RIVENC ⁽¹⁾, Richard PERRAUD ⁽²⁾, Gilles PERES⁽¹⁾, Thierry ZINK⁽³⁾, David ANDISSAC⁽³⁾, Richard MILLS⁽⁴⁾, Jacques CINQUIN⁽²⁾


COMSOL CONFERENCE 2016 MUNICH

- (1) Airbus Group Innovations, Toulouse, France
- (2) Airbus Group Innovations, Suresnes, France
- 3) Airbus Operations SAS, Toulouse, France
- (4) Airbus Operations Ldt, Filton, UK

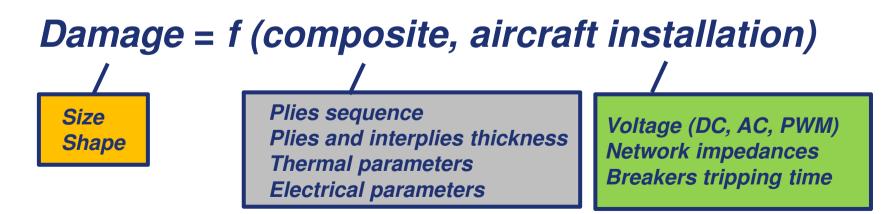

OUTLINE

- CONTEXT AND OBJECTIVES
- SIMULATION OF EXOTHERMIC REACTION WITH
 COMSOL
- SIMULATION OF IRREVERSIBLE VARIATION OF
 CONDUCTIVITY
- **RESULTS**
- FEEDBACK

STUDY CONTEXT

- A350: first aircraft in Airbus with composite fuselage.
- Incidental contact between cable and composite structure (e.g. chaffing);
- Current *lcc* into composite.

Design of a safe aircraft installation + protection devices => short-circuit has **no consequence**.


OBJECTIVES

Tomorrow:

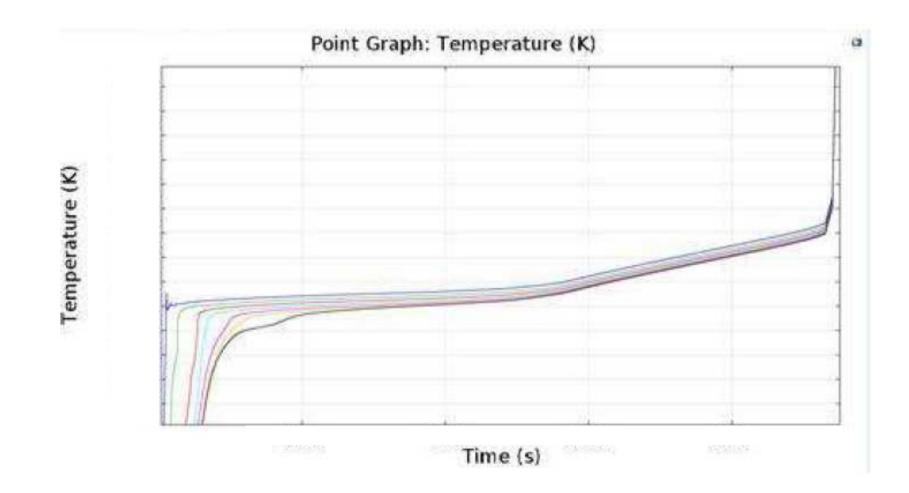
- •New composite materials;
- •Different installations;
- •Different protection devices (circuit breakers, solid-state...)
- Different voltages (e.g. 540VDC);

Limitation of physical tests (repeatability, cost, duration)

 \Rightarrow Numerical tool for predicting the damage;

PHENOMENA TO SIMULATE

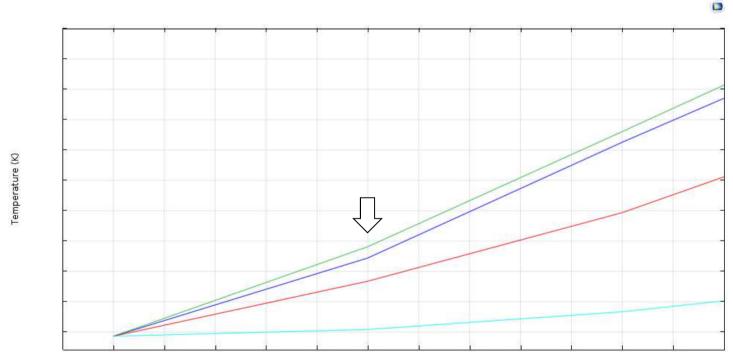
- Strong coupling between Electric and Thermal;
- Carbon fibers anisotropy;


Exothermic thermo-oxidation of resin;

Irreversible variation of electrical conductivity;

- Influence of circuit impedance and generator regulation.
- => Comsol Multiphysics

SIMULATION OF EXOTHERMIC REACTION Simulation with Comsol



- Resin thermo-oxidation is exothermic (DSC / TGA measurements);
- Heat transfer in solid / Phase change = problem: temperature rise decreases !!! => simulated phenomenon is endothermic.

SIMULATION OF EXOTHERMIC REACTION Solution

- Reaction progress: $\frac{dm}{dt} = -k \times m(t)$
- Local heat power density: $Q(t) = k \times m(t) \times d \times \Delta H$ with m: mass, k: kinetics, d: density, ΔH : enthalpy.

Time (s)

Temperature rise increases !!! => Exothermic reaction => OK.

SIMULATION OF IRREVERSIBLE VARIATION OF ELECTRICAL CONDUCTIVITY

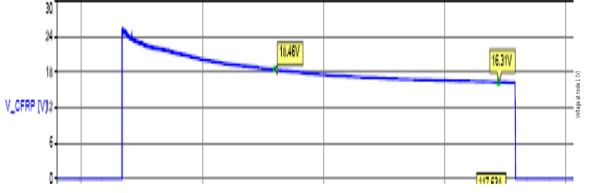
- Physical phenomenon:
 - Local conductivity is: $\sigma = \sigma_1$ (undamaged) => σ_2 (damaged).
 - Shifting is triggered by critical temperature T₀.
 - Phenomenon is irreversible.
- 1st attempt: $\sigma = \sigma_1 x (1-E) + \sigma_2 x E$, with E=nojac(if(T>T₀),1,0) \Rightarrow Works but very non-linear behavior.
- 2nd attempt:

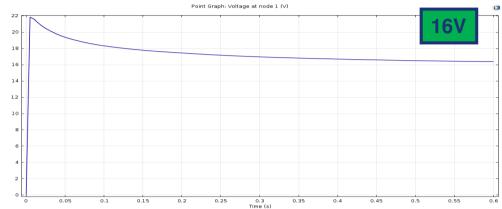
 $\sigma = \boldsymbol{f}(\boldsymbol{m}) \times \boldsymbol{b}$

dm

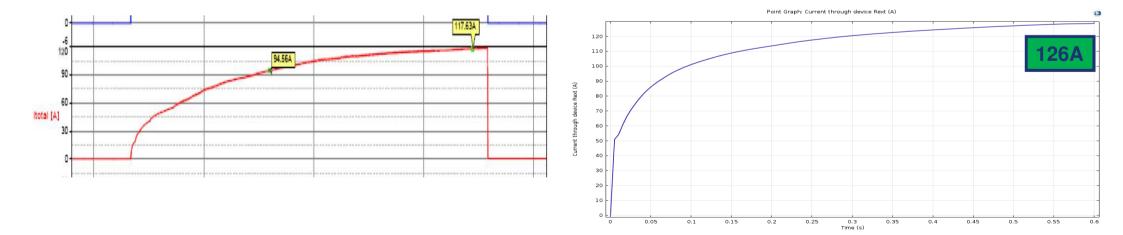
$$\frac{dm}{dt} = -k \times m(t) \times b$$

With b: boolean=1 if T> T_0 => latching of last computed values.




RESULTS

Correlation between tests and simulation


EXPERIMENT

t=600 ms

RESULTS *Example of mass loss mapping*

FEEDBACK

 Computation of the damage, with the various multiphysics phenomena with Comsol Multiphysics => Target achieved !

$\overline{\bigcirc}$

- No possibility to simulate exothermic phenomena with « Heat transfer with phase change » => need to « create » a local power density function;

ACKNOWLEDGMENT

The authors are very grateful to the Comsol support team in France for valuable technical discussions, and especially to Mr Fabio Bocchi.

Merci !

Comsol Conference Munich - Oct 13th 2016 - J Rivenc et al