Modelling Migration-Diffusion-Reaction Processes in an Idealised Lithium-Sulfur Cell

G. Minton, R. Purkayastha, S. Walus, M. Marinescu, T. Zhang, G. Offer

13/10/2016

- Developing Lithium Sulfur since 2005 in the Culham Science Centre (Oxfordshire, UK)
- Currently undertaking a number of projects, including the Revolutionary Electric Vehicle Battery project with Imperial College London, Cranfield University and Ricardo
- Overall aim is to develop a 400Wh/kg cell

Also includes the development of an advanced energy system controller and the use of

COMSOL Multiphysics

simulation-led R&D

- Modelling activities fall into four broad groups:
 - Battery management system (equivalent circuit)
 - Thermal behaviour
 - Homogeneous cell models
 - Microscopic models

- Electrochemical surface processes
- Surface and bulk phase chemical processes
- Probable feedback loops/nonlinear reaction pathway
- Maximum capacity realised when all solid S₈ is reduced to solid Li₂S.
- Reaction mechanism by which this occurs is not clear, but most electrochemistry occurs in the liquid phase (i.e. this is not Li-ion).
- We want a tool to help understand how these complex mechanisms may interact to lead to LiS-like behaviour.

- Electrochemical surface processes
- Surface and bulk phase chemical processes
- Probable feedback loops/nonlinear reaction pathway

- Two step discharge process
- Variation in curve shape and capacity with applied current

Lithium Sulfur modelling approach

 Standard modelling approach: homogenisation, electroneutrality and Butler-Volmer kinetics.

- We collapse both cathode and anode into layers either side of an electrolyte: slit-pore geometry.
- Allows electrode-electrolyte interface to be modelled.
- Removes geometrical properties of cathode.

Model structure: 1D planar electrode/slit pore

- Species fluxes and electric field described by modified Poisson-Nernst-Planck model
- Generalised Frumkin-Butler-Volmer type electrochemical reaction kinetics

- Hemispherical growth model
 - Dependent on surface activity
 - Homogenised surface

Cathode

Species sizes: $r_{A(l)} = 0.30$ nm $r_{A^{2-}} = 0.32$ nm $r_{B^-} = 0.30$ nm

Anode

$$C(s)$$
 \downarrow
Electrochemical
Dissolution

Cathode

Anode

$$C(s)$$

$$\downarrow \qquad \Delta \phi = -0.5V$$

$$C^+$$

- Initial voltage > 1V
- Reversible charge/discharge process
- Reversible precipitation/dissolution process

Cathode

Anode

$$C(s)$$

$$\downarrow \quad \Delta \phi = -0.5V$$

$$C^{+}$$

- Divalent ion dominant throughout discharge
- Monovalent ion consumed during second half part of discharge

Simplest reaction-map for a LiS-type discharge

Simplest reaction-map for a LiS-type discharge

Leads to two-step discharge process:

- There remains a problem with the precipitation
- Better understanding of dissolution required

- Subsequent cycles behave oddly
- Charge and discharge capacities differ significantly

Conclusions

- Developed a model for general complex reaction-diffusion processes in a geometrically simple electrochemical cell.
- The introduction of chemical reaction processes leads to emergent behaviour of the cell.
- Promising for being able to probe more complex reaction mechanisms.

Future work

- Understand what restricts the dissolution of the final solid phase.
- Investigate how reaction map complexity affects predicted behaviour.
- Investigate the so-called shuttle effect, which significantly affects LiS Coulombic efficiency.

Acknowledgements:

OXIS Energy:

Rajlakshmi Purkayastha Sylwia Walus Peter Kovacik **Imperial College London:**

Greg Offer

Monica Marinescu

Teng Zhang Ian Hunt Cranfield University:

Daniel Auger

Abbas Foutouhi

Karsten Propp

Thanks for listening

Questions?

