

Thermal Corrective Devices for Advanced Gravitational Wave Interferometers

Marie Kasprzack, Louisiana State University

6th October 2016

COMSOL Conference 2016 Boston

1. Advanced Gravitational Wave Detectors

- Based on resonant optical cavities with suspended optics under vacuum: dual recycling Michelson interferometer
- On the way to the 2nd Observing run:
 2 LIGO detectors in operation, Virgo detector will join in 2017
- First observations started recently at LIGO: GW150914, GW151226
- Facilities use **high power laser** (CW 1064 nm)

LIGO Livingston (LA)

1. Advanced Gravitational Wave Detectors

High laser power brings thermal effects:

- Thermal load on a Test Mass: Heating of the substrate
 - Coating and substrate absorb the beam power
 - Index of refraction of the mirror changes
 - produces a thermal lens
 - and potentially high order modes
 - Thermal expansion
 - changes the curvature of the mirror
- In the main cavities, thermal lensing ~ 0.8 μm (focal length 5 km)
- Thermal load changes over time

→ We need adaptive optics devices to correct for in-situ aberrations and input mode matching

High Power laser

2. Thermal devices for aberration mitigation

- **Ring heater**: installed
 - Around the main mirrors of the cavities
 - Target: correction of the Radius of Curvature
 - Two semispherical heating segments

- Thermally deformable mirror: prototype
 - Outside the cavity
 - Target: correction of higher mode aberrations for mode matching
 - Set of 61 resistors in the back of a 2" Ø mirror

3. Ring Heater

Simple analytical model:

$$ho C rac{\partial T}{\partial t} - K
abla^2 T = 0$$

- From the heat equation
- Both in steady state and time dependent model
- One circular segment
- ightarrow Useful to predict the general behavior of the system

- Limitations:
 - Design very limited
 - Axis-symmetry
- COMSOL[®] Model

Double purpose of validate our analytical model and lay the foundations for a more complex model

3. Ring Heater

Main time constant:

27 hours to reach steady state

Very good agreement between our analytical model and COMSOL

- \circ at t = 1000 s , relative difference below 5 %
- At t = 100000 s, relative difference below 1 %

• Actuation:

Control of the optical path length via the substrate temperature

- COMSOL[®] Model
 - Finite dimensions
 - 24.5 mm radius
 - 10 mm thick
 - No axis-symmetric assumption
 - Square actuator
 - o 100 mW coupled
- Effect of the actuator size?
- What is the best substrate for our application?
 - Moderate temperature increase
 - o Large amplitude of the optical response

305

▼ 302.93

343.08

 Global shape of temperature integral dominated by the heat radiation

- Shape characterized by:
 - The width at half maximum (HWHM)
 - depends on actuator size
 - mostly independent from the thermal properties of the substrate
 - independent from the thickness
 - o the amplitude

- Amplitude of actuation :
 - Thermal conductivity K is the most important parameter

• Material study:

• Choice of the substrate with the lowest thermal conductivity

Figure of merit: trade-off between

the amplitude response and the temperature of the substrate

Material	ΔT (K)	OPD Amplitude (nm)	OPD HWHM (mm)
BK7	52.5	368	2.39
\mathbf{FS}	43.1	400	2.41
SF57	91.2	1543	2.32
Zerodur	40.9	603	2.41
CaF_2	9.0	130	2.48
Sapphire	4.6	31	2.49

- Best solutions: Zerodur, Fused Silica BK7
- \rightarrow Current prototype: Fused silica with 61 actuators of 1 mm²

5. Conclusion

Ring heater

- Geometric improvement of the model (shape, fibers, ...)
- High order mode estimation
- Kalman filter implementation for the live prediction of aberrations

Thermally Deformable Mirror:

- Choice of material
- Design study from influence functions
- Tests and validations of proof of principle
- Still under development

Kasprzack - COMSOL Conference 2016 Boston

6. References

- Overview of Advanced LIGO Adaptive Optics
 A.F. Brooks et al.
- Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory, J. Ramette, M. Kasprzack, et al.
- Thermal Live Estimator for Advanced LIGO,
 J. Ramette, LIGO Document T1500390
- Performance of a thermally deformable mirror for correction of loworder aberrations in laser beams,
 M. Kasprzack et al.
- Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers M Kasprzack