On the use of a diffusion equation model for sound energy flow prediction in acoustically coupled spaces

Yun Jing, Ning Xiang

Graduate Program of Architectural Acoustics Rensselaer Polytechnic Institute Troy, New York

Geometrical acoustics

Sound rays

Energy based

Diffusion equation model

Sound energy density: solution of a diffusion equation

F. Ollendorff, ACOUSTICA, 1969

J. Picaut, et. al., Acust. Acta Acust. 1997

Diffusion equation $D\frac{\partial w(r,t)}{\partial n} + \frac{c\alpha}{2(2-\alpha)}w(r,t) = 0$

Interior Equation

Jing & Xiang, J. Acoust. Soc. Am., 2008

Double-sloped energy decay

Bradley&Wang, 2005

Application in coupled spaces

Assign diffusion coefficients based on each individual mean free path

Valid when the aperture is smaller

Sound pressure level (SPL)

$\mathbf{J} = -D \text{ grad } w(\mathbf{r}, t)$

Flow animation (T1<T2)

3D

Flow animation (T1<T2)

2D

Flow animation (T1>T2)

2D

Energy flow amplitude

 $J_{I}(\mathbf{r},t) =$

10 $\log\left[\left(\frac{\partial w(\mathbf{r},t)}{\partial x}\right)^2 + \left(\frac{\partial w(\mathbf{r},t)}{\partial v}\right)^2 + \left(\frac{\partial w(\mathbf{r},t)}{\partial z}\right)^2\right]^{\frac{1}{2}}$

Energy flow decay

R1

Summary

Diffusion equation

Energy flow direction

Energy flow decay

jingy@rpi.edu