

Stress State Determination in Nanoelectronic Silicon Devices Coupling COMSOL Multiphysics and a Recursive Dynamical CBED Pattern Simulation

<u>A. Spessot¹</u>, S. Frabboni², A. Armigliato³ and R. Balboni³

 ¹ Numonyx, Advanced R&D, NVMTD-FTM, Agrate Brianza (Italy)
 ² National Research Center S3, CNR-INFM and Department of Physics, University of Modena e Reggio Emilia (Italy)
 ³ CNR-IMM Section of Bologna, (Italy)

NATIONAL CENTER OF CNR-INFM

National Research Center S3, INFM-CNR

Department of Physics, University of Modena e Reggio Emilia, Modena (Italy)

CNR-IMM Section of Bologna (Italy)

- Introduction on stress
- Experimental part
 - CBED/TEM: a powerful strain measurements tool
- Simulation:
 - Dynamical split HOLZ pattern simulation
 - our recursive method
- An example of application: COMSOL+CBED
- Check by a different technique: COMSOL+LACBED
- Conclusions

Strain: a way to improve the performance of electronic devices

Examples of Strained-silicon technology applications:

- Extension of the performance of semiconductor transistors

- Power savings benefit

- Reduced device heat generation

We need methods to map strain at a nanoscale resolution (in order to use it!)

(*) Intel site

- Introduction on stress
- Experimental part
 - CBED/TEM: a powerful strain measurements tool
- Simulation:
 - Dynamical split HOLZ pattern simulation
 - our recursive method
- An example of application: COMSOL+CBED
- Check by a different technique: COMSOL+LACBED
- Conclusions

CBED: a powerful tool for strain analysis

STATE OF THE ART: set of patterns analysis

2D strain maps

Determination of the <u>strain tensor</u> in the silicon active regions of deep sub-micron devices with:

<u>Automatic</u> procedure (no deformation model required)

very high spatial resolution

<mark>≽good sensitivity</mark>

(*) Armigliato A, Balboni R, Frabboni S, 2005 Appl. Phys. Lett. 86, 63508

- Introduction on stress
- Experimental part
 - CBED/TEM: a powerful strain measurements tool
- Simulation:
 - Dynamical split HOLZ pattern simulation
 - our recursive method
- An example of application: COMSOL+CBED
- Check by a different technique: COMSOL+LACBED
- Conclusions

The problem of HOLZ line splitting

Large strain *gradients* in the electron direction

Local *bending* of the lattice planes

- 1) the HOLZ lines are *SPLIT* in two components
- 2) INTERMEDIATE FRINGES can be observed

Undeformed silicon profile

New methods are required

Split HOLZ pattern recursive simulation (1)

1) Parametrized Displacement Field Modelization (from an Analytical Model or Finite Element Method)

FE model

Analytical model $R_{x}(x, y, z) = f(n_{y}, n_{y}, z, y, z)$

e.g.: Pseudo-thermal relaxation [*example:* (*Si_xGe_{1-x} / Si*)]

[example: spherical coherent precipitate]

e.g.: Radial deformation

Split HOLZ pattern recursive simulation (2)

2) Dynamical simulations (column approximation)

$$\Psi(z) = \prod_{k=1}^{n} [\mathbf{Q}_{k} \mathbf{P}_{k}(\mathbf{Z}_{k}) \mathbf{C}_{k} \boldsymbol{\gamma}_{k}(t_{k}) \mathbf{C}_{k}^{-1} \mathbf{P}_{k}(-\mathbf{Z}_{k-1}) \mathbf{Q}_{k}^{-1}] \cdot \Psi(0)$$
(*)
Displacement

3) Comparison between experimental & simulation pattern (multiple line scan or 2D cross- correlation)

4) Best Fit (minimization of χ^2 with iterative simulation)

(*) Peng & Whelan Many-Beams Matrix Formulation: L.M. Peng and M.J. Whelan, Proc.Roy.Soc. London A **431**, 111 (1990) Copyright © 2008 Numonyx B.V.

Split HOLZ pattern recursive simulation (3)

DISPLACEMENT FIELD RECONSTRUCTION along z in the (x_i, y_i) surface point

SAMPLING THE DISPLACEMENT FIELD AT DIFFERENT (X_i, Y_i) POSITIONS

STRAIN FIELD MAP

- Introduction on stress
- Experimental part
 - CBED/TEM: a powerful strain measurements tool
- Simulation:
 - Dynamical split HOLZ pattern simulation
 - our recursive method
- An example of application: COMSOL+CBED
- Check by a different technique: COMSOL+LACBED
- Conclusions

CASE STUDY

TiSi₂ self-aligned silicides ("salicide") overlayers onto the 200 nm wide active silicon areas of STI (Shallow Trench Isolation) structures

Experimental Details

Bamboo-like distribution of grain boundaries (grain size: ~100 nm)

Results: Example of strained pattern simulations

Exp

Exp

Sim

Sim

Z = 110 nm

Page 16 Copyright © 2008 Numonyx B.V.

Results: Discrimination between different deformation models (I)

Best fit deformation model in a CBED pattern

Test of the model in a sequence of CBED patterns

Discrimination between various models

Results: Discrimination between different deformation models (II)

FEA Theory:

- Deformation calculated with a pseudo thermal relaxation
 - Assumption of lattice mismatch between lattice and stressor sources

- Large displacement taken into account
- Extrusion of the 2D deformation into 3D model

Results: Displacement and Strain Field in the analyzed TEM sample

By numerical interpolation, the strain field can be evaluated in points where the experimental CBED patterns cannot be acquired

- Introduction on stress
- Experimental part
 - CBED/TEM: a powerful strain measurements tool
- Simulation:
 - Dynamical split HOLZ pattern simulation
 - our recursive method
- An example of application: COMSOL+CBED
- Check by a different technique: COMSOL+LACBED
- Conclusions

LACBED patterns

Check of the CBED results by LACBED

Sim. 2 Sim. 1 Exp. Inhomogeneous Homogeneous model model (a) (008) ame CBEI (004) econstructed model! 200 nm **NUMONYX** Copyright © 2008 Numonyx B.V. Page 23

Check of the strain field obtained by CBED in <230>

Stain field obtained in the <120> by LACBED is in agreement with the CBED results

Conclusions

1) By *CBED* simulation, the displacement field is reconstructed in the TEM sample by the analysis of an <u>experimental database</u> of patterns. Coupling the experimental data with the COMSOL simulation, the <u>strain gradient</u> can be evaluated

2) The strain field can be checked in the LACBED simulation even in the <u>inhomogeneous case</u>, and used to reconstruct the unthinned situation with the help of FEA simulation

