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Abstract: In this study we model the
sound attenuation properties of a hearing
aid earmold tube. The model includes ther-
moviscous acoustic effects and it couples
structural vibrations to the external acous-
tic field. Moreover, the finite element do-
main is coupled at two boundaries with an
electroacoustic model of a hearing aid and
an acoustic 2-cc coupler.
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1 Introduction

A major problem in high power hearing aids
is feedback and mechanical stability. One
of the possible sources of feedback may be
the sound radiating from the plastic tub-
ing that connects the hook on the hearing

aid (behind/on the ear) to the earmold (lo-
cated in the ear). Sound radiating through
the tubing may be picked up by the hearing
aid microphone and create feedback. The
current modeling work is inspired by the ex-
perimental work of Flack et al. [6]. Using
Comsol Multiphysics we model the same ex-
perimental setup which they used to mea-
sure the sound attenuation of the tubing.
In the following, we, firstly, present experi-
mental set-up and the finite element (FEM)
model set up. Secondly, we present the gov-
erning equations for sound propagation in
a fluid including thermoviscous losses and
for sound vibrations in an elastic solid. We
also present the boundary conditions (BCs)
used to couple the FEM domain to an elec-
troacoustic equivalent of a hearing aid and
a coupler. Then the modeling results are
presented, and, finally, we give some conclu-
sions.�� ������� ��	
��� � �������	 ���

Figure 1: Schematic of the experimental set-up used by Flack et al. [6] to measure sound attenuation.
The system includes hearing aid (HA), 2-cc coupler, receiver (rec.), coupler microphone Lmic, external

microphone L0 , and the 30 mm earmold tube.

2 Experimental set-up

In the experiments performed by Flack et
al., a rubber tube of length 30 mm is con-
nected in one end to a HA and in the other
end to a 2-cc coupler. The experiment is per-

formed in a soundproof test box. The signal
played by the hearing aid receiver is recorded
at the coupler microphone Lmic and on the
outside at the microphone L0. The experi-
mental set-up is depicted in Fig. 1.
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3 Model set-up

In order to model the the sound attenua-
tion of the earmold tubing we have chosen
to mimic the experimental set-up described
above. The computational domain is de-
picted in Fig. 2 including selected dimen-
sions. The tube has length L, inner diam-
eter R, and outer diameter R + dR. To re-
duce the computational cost the system has
been simplified. Firstly, we have used an ax-
isymmetric model and, secondly, the hear-
ing aid and coupler are modeled by electroa-
coustic equivalents on the inlet and outlet
boundaries. The coupling is performed us-
ing acoustic impedance BCs (described be-
low). The outer acoustic domain is trun-
cated using a perfectly matched layer region
mimicking an open boundary (also described
below). The system of equations and BCs is
implemented using the Comsol scripting lan-
guage into Matlab.
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Figure 2: Schematic representation of the FEM
part of the system comprising fluid, solid, and
perfectly matched layer (PML) domain. The
rubber tube has inner radius R, outer radius
R + dR, length L, inlet boundary ∂Ωin, and

outlet boundary ∂Ωout. The two points δin and
δout are used to implement point constraints.

4 Governing equations

In the fluid areas we solve the full ther-
moviscous acoustic problem assuming time
harmonic variation of the dependent vari-
ables. The problem is defined by the lin-
earized Navier-Stokes equation

iωρ0ui = −∇ip+(λ+µ)∇i(∇juj)+µ∇j∇jui,
(1)

the continuity and constitutive equation

iω

(
p

p0
− T

T0

)
= −∇iui, (2)

and the energy equation

iωρ0CpT = κ∇i∇iT + iωp, (3)

where p is the acoustic pressure, T the excess
temperature, ui the acoustic velocity vari-
ation component, ω the angular frequency,
p0 the static pressure, T0 the static tem-
perature, µ the dynamic viscosity, λ the di-
latational viscosity, Cp the specific heat at
constant pressure, and κ the heat conduc-
tion coefficient. Further details are found in
Refs. [2, 1, 9, 5, 8].

In the solid domain we solve for the dis-
placement field Ui in a linear elastic solid

− ω2ρ0Ui = ∇jσij (4)

where we again assume time harmonic vari-
ations, and σij is the stress tensor. To
mimic the lossy properties of the elastic solid
we introduce a complex Young’s modulus
Ẽ = E(1 + iη), where η is the loss factor.
In this study we assume that it is not neces-
sary to model viscoelastic properties of the
tubing and that η is not frequency depen-
dent.

5 Perfectly matched
layers

In the perfectly matched layers (PMLs) re-
gion we introduce a change of independent
variables xi → Zxi . The variables are
changed to complex valued and chosen such
that they are continuous on the bound-
ary. The new complex variables introduce
a damping of the outgoing and incoming
waves. With reference to Fig. 2 a set of co-
ordinates that introduce absorption in the



spherical direction are defined by

` =
|C0 − x| −Rf

αRf
(5)

R̃ = Rf + `n c

f
(1− i) (6)

Zxj =
R̃(xj − x0)
|C0 − x| , j = 1, 2 (7)

where C0 = (0, z0), [xi] = (r, z), n is an ex-
ponent that controls the amount of damping,
` is the local radial coordinate in the PML,
c the speed of sound, and f the frequency.
For further details see Refs. [3, 11, 4, 7].

This change of variables is straight for-
ward when the governing equations are for-
mulated in the weak form. The main task
when implementing the new coordinates in
the PML region is to calculate the Jacobian
J and its inverse J−1. When this is done
the integrals in the weak formulation may
be changed as follows

∫

Ω

f(xi,
∂

∂xi
)dV →

∫

Ω̃

f(Zxi ,
∂

∂Zxi

)dṼ

=
∫

Ω

f(Zxi(xi), J−1
ji

∂

∂xj
)|J |dV. (8)

6 Boundary conditions

Fluid-solid: On the fluid-solid boundary
we impose continuity of the displacement
field iωUi = ui and of the normal stress.
This is achieved by introducing a Lagrange
multiplier λ = (λu, λv) and defining

n2 : σ = λ (9)
n1 : S = −λ (10)

λ̃ · (u− iωU) = 0. (11)

where λ̃ is the test function of the Lagrange
multiplier, σ is the stress in the solid and S
is the stress in the fluid. This yields a weak
term on the solid-fluid boundary having the
form
∫

∂Ω

(Ũ − ũ) · λdL +
∫

∂Ω

λ̃ · (u− iωU)dL

(12)

Inlet and outlet: On the inlet and out-
let boundaries we wish to couple the FEM
model to an electroacoustic model (or two-
port model). This idea is inspired by Stin-
son and Daigle [10]. On the inlet we have

a two-port prescribing the relation between
the electrical input on the receiver (current
Irec and voltage Vrec) and the acoustic out-
put of the HA (pressure pin and volume flow
Qin) given by

[
Vrec

Irec

]
=

[
Ain Bin

Cin Din

] [
pin

Qin

]
(13)

where the matrix elements are frequency de-
pendent. On the outlet we also use an elec-
troacoustic equivalent of the 2-cc coupler
and coupler microphone, which may be for-
mulated as an acoustic impedance

Zout =
pout

Qout
. (14)

The two above acoustic conditions are im-
posed as weak constraints on the points δin

and δout depicted on Fig. 2. On the inlet as

u− λ1ue = 0 on ∂Ωin∫

δin

(V −AinPin/αin −BinQin)λ̃1 dP = 0

[αin, Pin, Qin] =
∫

∂Ωin

[1, p, u · n] dA (15)

and on the outlet

u− λ2uf = 0 on ∂Ωout∫

δout

(Pout/αout − ZoutQout)λ̃2 dP = 0

[αout, Pout, Qout] =
∫

∂Ωout

[1, p, u · n] dA

(16)

where λ1 and λ2 are Lagrange multipli-
ers and ue and uf are the non-evanescent
eigensolutions to the thermoviscous acous-
tic problem on the inlet and outlet bound-
aries, respectively. It is here important to
note that we need to use the eigensolutions
formulation because the boundaries are not
regarded as walls but rather as open semi
reflecting boundaries.

7 Results

The model is firstly run for material param-
eters representative of the earmold tubing
used on standard Widex hearing aids. With
Young’s modulus E = 4.1 ·107 Pa, Poission’s
ratio σp = 0.45, density ρs = 1220 kg/m3,
and the loss factor estimated to η = 0.019.



The simulated results of a sound attenua-
tion experiment are presented in Fig. 3 to-
gether with the experimental results of Flack
et al.. Note that the materials used in the ex-
periment do not match the simulated tube.
The experimental results are presented as a
rough order of magnitude estimate.
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Figure 3: Simulated sound attenuation as
function of frequency. The black line represents

the direct sound attenuation measured from
the center of the tube and the red line the

attenuation measured with the coupler
microphone. Experimental results of Flack et

al. are presented with red bullets.

In Fig. 3 we note that the actual/correct
sound attenuation calculated from within
the tube center to outside the tube is larger
than the one measured using the coupler mi-
crophone. This could indicate that the at-
tenuations measured in the experiments are
actually off by 30 dB for some frequencies.

In Fig. 4 we present the simulated at-
tenuation for various values of the loss fac-
tor η, together with a simulated steel pipe,
and again the experimental results (again
only depicted as an order of magnitude esti-
mate). From the figure we note that larger
attenuation is naturally achieved for a more
lossy material (increasing η) and for a more
stiff material (steel). To numerically ver-
ify the experimental results of Flack et al.
we might have to make some improvements
to the model. Firstly, the loss factor might
be frequency dependent and, secondly, the
rubber might exhibit nonlinear viscoelastic
properties not modeled here.
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Figure 4: Simulated sound attenuation
measured as Lcouplermic. − L0 for various

values of the loss factor η and for a simulated
steel tube.

As a final results we present the sound pres-
sure level Lp = 20 log(|p|/20 · 10−6) field
around the radiating earmold tube. The
sound pressure level is depicted in Fig. 5 for
the frequency f = 1000 Hz.

Figure 5: Sound pressure level Lp around the
radiating tube for frequency f = 1000 Hz. Note

the 50 dB attenuation over the PML layer.

8 Conclusion

The sound attenuation properties of earmold
tubing have been investigated using an ax-
isymmetric model of a thermoviscous acous-
tic fluid coupled with a linear elastic solid.
The model comprises acoustic impedance
boundary conditions that couple a FEM do-
main to an electroacoustic representation of
a larger external acoustic system. This en-
ables us to model a large acoustic system
and only solve the details FEM model when
relevant.
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